Efeito de diferentes auxinas e de giberelina na indução de brotos estiolados *in vitro* de abacaxi Imperial para propagação clonal por segmentos nodais.

<u>Santos, Micaele da Costa</u>¹; Barboza, Sarah Brandão Santa Cruz²; Copati, Luiz Augusto Souza³; Lédo, Ana da Silva⁴; Sigueira, Sammara Cristhiane Almeida¹

¹Bolsista do Deagro/Universidade Federal de Sergipe, São Cristóvão, SE, fone (79) 3219 1144, e-mail: micacostal@hotmail.com; ²Pesquisadora do Deagro/Embrapa Tabuleiros Costeiros, Caixa Postal 44, CEP 49025-040, Aracaju, SE, fone (79) 4009 1362, e-mail: sarah@cpatc.embrapa.com.br; ³e-mail: luizcopati@uol.com.br, fone (61) 3383 1832; ⁴Pesquisadora da Embrapa Tabuleiros Costeiros, e-mail: analedo@cpatc.embrapa.br.

As variedades de abacaxizeiro utilizadas em plantios comerciais no Brasil são susceptíveis a fusariose. O abacaxi Imperial é uma cultivar que foi desenvolvida pela Embrapa Mandioca e Fruticultura Tropical, resistente a fusariose, e sendo esta doença responsável por elevadas perdas na produção, a utilização de genótipos resistentes é de grande importância para o sucesso da cultura. A micropropagação de novos materiais utilizando segmentos nodais é citada como uma das técnicas da cultura de tecidos de plantas que reduzem o aparecimento de variantes durante a multiplicação in vitro. Este trabalho teve o objetivo de contribuir para a otimização de um protocolo de micropropagação por meio de secções nodais estioladas. Caules de brotos de abacaxi Imperial com 5 a 7 cm de comprimento de parte aérea, desenvolvidas in vitro a partir de gemas axilares foram utilizados como explantes. O meio de cultura básico foi o MS, gelificado com agar a 7 g.L⁻¹, pH ajustado para 5,8 e autoclavado por 15 minutos a 120°C. O delineamento foi inteiramente ao acaso com seis tratamentos (sem fitorregulador; ácido naftaleno acético (ANA) 1,86 mg.L⁻¹; ácido indolacético (AIA) 1,75 mg.L⁻¹; ácido indolbutírico (AIB) 2,03 mg.L⁻¹; ácido giberélico (GA₃) 1,73 mg.L⁻¹; GA₃ 0,86 mg.L⁻¹) e três repetições com cinco explantes por repetição. A manipulação dos explantes ocorreu em condições assépticas e a inoculação feita em tubos de ensaio envoltos em papel alumínio e mantidos em sala de crescimento com temperatura de 25 ± 2°C. Foram avaliados: número de brotos estiolados por explante, comprimento de brotos e número de nós por broto. Aos 30 dias de cultivo o número de brotos estiolados por explante variou de 1,21 a 2,0 e o comprimento de brotos de 2,02 a 2,82, não mostrando diferença significativa entre os tratamentos para cada variável avaliada. No mesmo período, em meio de cultura sem fitorregulador e em presença de ANA 1,86 mg.L⁻¹ e GA₃ 1,73 mg.L⁻¹ obteve-se maior número de nós por broto. Aos 60 dias de cultivo o comprimento médio de brotos (5,13 cm) e o número médio de nós por brotos (4,0) foram superiores em todos os tratamentos quando comparado àqueles obtidos aos 30 dias. Em meio de cultura MS acrescido de GA₃ 0,86 mg.L⁻¹, aos 60 dias de cultivo, obtém-se melhores resultados para o estiolamento in vitro de abacaxi Imperial.

PALAVRAS-CHAVES

Ananas comosus; cultivo in vitro; regulador de crescimento; secções nodais