Qualidade de hastes florais de lisianthus (Eustoma grandiflorum Raf.) inoculadas com Bacillus subtilis e Glomus intraradices

Autores

DOI:

https://doi.org/10.1590/2447-536X.v28i4.2498

Palavras-chave:

desenvolvimento vegetal, fungos micorrízicos arbusculares, planta ornamental, qualidade pós-colheita, rizobactérias promotoras de crescimento vegetal

Resumo

Lisianthus (Eustoma grandiflorum) é uma espécie ornamental utilizada como planta em vaso ou flor de corte, cuja popularidade se deve à diversidade de cores, número de botões florais e vida útil. No entanto, durante as primeiras fases de desenvolvimento, problemas como clorose foliar e doenças radiculares afetam a maioria das cultivares, causando baixo crescimento, hastes finas e poucas flores. O uso de rizobactérias promotoras de crescimento de plantas (PGPR) e fungos micorrízicos arbusculares (FMA) melhora o crescimento das plantas, pois esses microrganismos colonizam a raiz do sistema vegetal. Portanto, a fim de proporcionar melhores condições para o desenvolvimento da haste, o objetivo deste trabalho foi avaliar o efeito individual e combinado de Bacillus subtilis (PGPR) e Glomus intraradices (FMA) sobre o crescimento e a qualidade pós-colheita em hastes de lisianthus cv . Mariachi. Utilizando-se o produto comercial Alubión-X (Bacillus subtilis, PGPR) e o fungo micorrízico Glomus intraradices. Os resultados mostraram um efeito significativo da inoculação de G. intraradices no tamanho (66,92 cm) da haste, bem como a combinação de B. subtilis + G. intraradices (65,51 cm) em relação ao controle (36,9 cm). O número médio de botões e flores abertas das hastes tratadas com G. intraradices foram 33,35 e 23,9 respectivamente, significativamente maiores que o controle não tratado. G. intraradices sozinho é a melhor opção para aplicar em lisianthus, quando comparado a aplicação isolada de B. Subtilis.

Downloads

Não há dados estatísticos.

Biografia do Autor

David Jaén-Contreras, Colegio de Postgraduados

Recursos Genéticos y Productividad, Campus Montecillo, Texcoco, México.

Ma. de Lourdes Arévalo-Galarza, Colegio de Postgraduados

Programa de Estadística, Campus Montecillo, Montecillo Texcoco, México.

Martha Elva Ramírez-Guzman, Colegio de Postgraduados

Programa de Estadística, Campus Montecillo, Montecillo Texcoco, México.

Jorge Cadena-Iñiguez, Colegio de Postgraduados

Campus San Luis Potosí, Salinas de Hidalgo, San Luis Potosí, México.

Marcos Ventura Hernández-Vázquez, Campo Experimental Cotaxtla-INIFAP

Medellín de Bravo, Veracruz, México.

Referências

AZCÓN, R.; GÓMEZ, M.; TOBAR, R. Effects of nitrogen source on growth, nutrition, photosynthetic rate and nitrogen metabolism of mycorrhizal and phosphorus-fertilized plants of Lactuca sativa L. New Phytologist, v.121, p.227-234, 1992. https://doi.org/10.1111/j.1469-8137.1992.tb01108.x

BARROS, V.; FROSI, G.; SANTOS, M.; RAMOS, D.G.; FALCAO, H.M.; SANTOS, M. Arbuscular mycorrhizal fungi improve photosynthetic energy use efficiency and decrease foliar construction cost under recurrent water deficit in woody evergreen species. Plant Physiology and Biochemistry, v.3, p.469-477, 2018. https://doi.org/10.1016/j.plaphy.2018.04.016

CAI, X.; ZHAO, H.; LIANG, C.; LI, M.; LIU, R. Effects and mechanisms of symbiotic microbial combination agents to control tomato fusarium crown and root rot disease. Frontiers in Microbiology, v.12., 629793, 2021. https://doi.org/10.3389/fmicb.2021.629793

CASTILLO-GONZÁLEZ, A.M.; AVITIA-GARCÍA, E.; VALDEZ-AGUILAR, L.A.; VELÁZQUEZ-MALDONADO, J. Extracción nutrimental en lisianthus (Eustoma grandiflorum [Raf.] Shinn) cv. Mariachi Pink. Revista Mexicana de Ciencias Agrícolas, v.8, p.345-354, 2017. https://doi.org/10.29312/remexca.v8i2.55

CAVASINI, R.; LASCHI, D.; REIS-TAVARES, A.; PEREIRA LIMA, G.P. Carbohydrate reserves on postharvest of lisianthus cut flowers. Ornamental Horticulture. v.24, p.12-18, 2018. http://dx.doi.org/10.14295/oh.v24i1.110

CRUZ-CRESPO, E.; JAEN-CONTRERAS, D.; CADENA-IÑIGUEZ, J.; GAYTAN-ACUÑA, A.; AREVALO-GALARZA, M.L. Foliar fertilization in the quality of lisianthus (Eustoma grandiflorum (Raf) Shinners.) ´Flamenco purple´stems. Agroproductividad, v.13, p.83-90, 2020. https://doi.org/10.32854/agrop.vi.1671

GARMEDIA, I.; MANGAS, V. J. Application of arbuscular mycorrhizal fungi on the production of cut flower roses under commercial-like conditions. Spanish Journal of Agricultural Research, v.10, p.166-174, 2012. http://dx.doi.org/10.5424/sjar/2012101-086-11

GERDEMANN, J.W.; NICOLSON, T.H. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society, v.46, p.235-244, 1963. https://doi.org/10.1016/S0007-1536(63)80079-0

KENAWY, A.; DAILIN, D.J.; ABO-ZAID, G.A.; MALEK, R.A.; AMBEHABATI, K.K.; ZAKARIA, K.H.N., SAYYED, R.Z., EL ENSHASY, H.A. Biosynthesis of antibiotics by PGPR and their roles in biocontrol of plant diseases. In: SAYYED, R. (eds). Plant Growth Promoting Rhizobacteria for Sustainable Stress Management. Singapore: Springer Nature, 2019. 419p.

KHANDAN-MIRKOHI, A.; SHEIKH-ASADI, M.; TAHERI. M.R.; BABALAR, M. The effects of arbuscular mycorrhizal fungi and different phosphorus levels on some growth aspects of lisianthus. Journal of Science and Technology of Greenhouse Culture, v.6 n.22, 2015. https://doi.org/10.18869/acadpub.ejgcst.6.2.57

LUCKE, M.; CORREA, M.G.; LEVY, A. The role of secretion systems, effectors, and secondary metabolites of beneficial rhizobacteria in interactions with plants and microbes. Frontiers in Plant Science, v.11, 589416, 2020. https://doi.org/10.3389/fpls.2020.589416

MCGOVERN, R.J. Diseases of lisianthus. In: MCGOVERN, R.J.; ELMER, W. (Ed.). Handbook of Florists’ crops diseases. Handbook of plant disease management. Cham: Springer, 2018. p.583-632.

MEIR, D.; PIVONIA, S.; LEVITA, R.; DORI, I.; GANOT, L.; MEIR, S.; SALIM, S.; RESNICK, N.; WININGER, S.; SHLOMO, E.; KOLTAI, H. Application of mycorrhizae to ornamental horticultural crops: lisianthus (Eustoma grandiflorum) as a test case. Spanish Journal of Agricultural Research, v.8, S5-S10, 2010.

MOHAMED, I.; EID, K.E.; ABBAS, M.H.H.; SALEM, A.A.; AHMED, N.; ALI, M.; SHAH, G.M.; FANG, C. Use of plant growth promoting Rhizobacteria (PGPR) and mycorrhizae to improve the growth and nutrient utilization of common bean in a soil infected with white rot fungi. Ecotoxicology and Environmental Safety, v.171, p.539-548, 2019. https://doi.org/10.1016/j.ecoenv.2018.12.100.

NANJUNDAPPA, A.; BAGYARAJ, D.J.; SAXENA, A.K.; KUMAR, M.; CHAKDAR, H. Interaction between arbuscular mycorrhizal fungi and Bacillus spp. in soil enhancing growth of crop plants. Fungal Biology and Biotechnology. v.6, n.23, 2019. https://doi.org/10.1186/s40694-019-0086-5

NEVES, C.G.; BELLÉ, C.; NASCIMENTO, M.B.; GROLLI, P.R.; GOMES, C.B.; BARROS, D.R. First report of Meloidogyne arenaria on lisianthus (Eustoma grandiflorum) in Brazil. Plant Disease, v.101, n.3, 2017. https://doi.org/10.1094/PDIS-09-16-1352-PDN

NORDSTEDT, N.P.; JONES, M.L. Isolation of rhizosphere bacteria that improve quality and water stress tolerance in greenhouse ornamentals. Frontiers in Plant Science, v.11, article 826, 2020. https://doi.org/10.3389/fpls.2020.00826

NORIKOSHI, R.; SHIBATA, T.; ICHIMURA, K. 2016. Cell division and expansion in petals during flower development and opening in Eustoma grandiflorum. The Horticulture Journal, v. 85, p.154-160, 2016. https://doi.org/10.2503/hortj.MI-071

NOUMAVO, P.A.; AGBODJATO, N.A.; BABA-MOUSSA, F.; ADJANOHOUM, A.; BABA-MOUSSA, L. Plant growth promoting rhizobacteria: Beneficial effects for healthy and sustainable agriculture. Review. African Journal of Biotechnology, v.15, p.1452-1463, 2016. https://doi.org/10.5897/AJB2016.15397

PHILLIPS, J.M.; HAYMAN, D.S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, v.55, p.158-161, 1970. https://doi.org/10.1016/S0007-1536(70)80110-3

RUBÍ-ARRIAGA, M.; GONZÁLEZ-HUERTA, A.; OLALDE-PORTUGAL, V.; REYES-REYES, B.G.; CASTILLO- GONZÁLEZ, A.M.; PÉREZ-LÓPEZ, D.; AGUILERA-GÓMEZ, L.I. Contribución de fósforo al mejoramiento de calidad en Lilium y la relación con Glomus fasciculatum y Bacillus subtilis. Revista Mexicana de Ciencias Agrícolas, v.3, p.125-139, 2012.

SAGAR, A.; RATHORE, P.; VRAMTEKE, P.W.; RAMAKRISHNA, W.; REDDY, M.S.; PECORARO, L. Plant growth promoting rhizobacteria, arbuscular mycorrhizal fungi and their synergistic interactions or counteract the negative effects of saline soil on Agriculture: key macromolecules and mechanisms. Microorganisms, v.9, 1491, 2021. https://doi.org/10.3390/microorganisms907149.

SOHRABI, F.; SHIKHOLESLAMI, M.; HEYDARI, R.; REZAEE, S.; SHARIFI, R. Investigating the effect of Glomus mosseae, Bacillus subtilis and Trichoderma harzianum on plant growth and controlling Meloidogyne javanica in tomato. Indian Phytopathology, v.73, p.293-300, 2020. https://doi.org/10.1007/s42360-020-00227-w

SOROA, M.R.; CORTÉS, S.L.; HERNÁNDEZ, A. Comunicación corta. Estudio del efecto de la aplicación de biofertilizantes sobre algunas variables de crecimiento y rendimiento en Gerbera jamesonii cv. Bolus. Cultivos Tropicales, v.24, p.15-17, 2003.

XIAO, R.F.; WANG, J.P.; RUAN, C.Q.; PAN, Z.Z. ZHUA, Y.J.; LIU, B. Root and stem rot on lisianthus (Eustoma grandiflorum) in China caused by Fusarium solani. Canadian Journal of Plant Pathology, v.40, n.3, 455-460, 2018. https://doi.org/10.1080/07060661.2018.14742 63

XIE, M.M.; WANG, Y.; LI, Q.S.; KUČA, K.; WU, Q.S. A friendly-environmental strategy: application of arbuscular mycorrhizal fungi to ornamental plants for plant growth and garden landscape. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, v.48, n3, p.1100-1115, 2020. https://doi.org/10.15835/nbha48312055

Downloads

Publicado

2022-11-22

Edição

Seção

Artigos