Indução de mutagênese em crisântemo

Autores

DOI:

https://doi.org/10.1590/2447-536X.v28i4.2523

Palavras-chave:

crisântemo, melhoramento por mutação, mutante in vitro, plantas ornamentais, variação

Resumo

A diversidade genética das culturas tem papel significativo na melhoria de novas plantas por meio do melhoramento. O crisântemo contém a maioria das variedades mutantes, tornando a reprodução por mutação um dos procedimentos de reprodução mais amplamente utilizados para plantas ornamentais. O objetivo da pesquisa é usar a irradiação gama para induzir variação genética e criação de mutações para melhorar as características do crisântemo. Explantes de gemas in vitro do tipo ‘Bacardi’ branco foram tratados com raios gama a 20 Gy neste escopo. Os explantes foram subcultivados até que ocorresse o período de crescimento M1V4, e as ob- servações foram feitas durante a floração neste momento. Larguras das inflorescências, distinção nas alturas e larguras das plantas, números de flores, variações de cor e tamanho dos raios das flores estavam entre as mudanças mutagênicas observadas em plantas e flores. Os raios das flores variavam em comprimento, largura, número de fileiras e cor. A frequência de mutação da população foi estimada em 1,1% e flores de cor amarela foram desenvolvidas, enquanto o grupo de controle permaneceu branco. O dendrograma foi agrupado em cinco grupos com 1, 28, 31 e 41 mutantes em cada um com base na altura e largura da planta, altura e largura do caule da planta, número de brotos e flores por planta, largura da inflorescência, número dos floretes nos raios. altura-cor, número de folhas, comprimento e largura das folhas e peso das hastes floridas. Os mutantes de cor amarela estavam localizados no primeiro, segundo e quarto grupos. As mutações vantajosas podem resultar na melhoria de novas variedades. A radiação gama é um mutagênico eficaz para a criação de novos tipos de crisântemo quando aplicawda a explantes de gemas in vitro.

Downloads

Não há dados estatísticos.

Biografia do Autor

Gulden Haspolat, Aegean Agricultural Research Institute

Department of Horticulture-Ornamental Plants, Menemen, Izmir, Turkey.

Referências

ANDERSON, N.O.; ASCHER P.D; FRITZ, V.; ROHWER, C.; POPPE, S.; YAO, S.; JOHNSON, P.; KLOSSNER, L.; EASH, N.S.; LIEDL, B.E.; REITH-ROZELLE, J. Chrysanthemum xhybridum MN 98-89-7 shrub garden Chrysanthemum. HortScience, v.52, n.2, p.306-309, 2017. https://doi.org/10.21273/HORTSCI11203-16

ANNE, S.; LIM, J.H. Mutation breeding using gamma irradiation in the development of ornamental plants: A Review. Flower Research Journal, v.28, n.3, p.102-115, 2020. https://doi.org/10.11623/frj.2020.28.3.01

BAGHELE, R.D. Breeding aspect for improvement in Chrysanthemum: A Review. International Journal of Current Microbiology and Applied Sciences, v.10, n.05, p.101-111, 2021. https://doi.org/10.20546/ijcmas.2021.1005.015

BRAKAT, M.N.; FATTAH, R.S.A.; BADR, M.; EL-TORKY, M.G. In vitro mutagenesisandidentificationofnew variants via RAPD markers for improving Chrysanthemum morifolium. African Journal of Agricultural Research, v.5, n.8, p.748-757, 2010.

DATTA, K. Induced mutations: technological advancement for development of new ornamental varieties. Nucleus, v.63, n.2, p.119-129, 2020. https://doi.org/10.1007/s13237- 020-00310-7

DIN, A.; QADRI, Z.A.; WANI, M.A.; RATHER, Z.A.; IQBAL, S.; MALIK, S.A.; HUSSAIN, P.R.; RAFIQ, S.; NAZKI, I.T. Congenial in Vitro γ-ray-induced mutagenesis underlying the diverse array of petal colours in Chrysanthemum (Dendranthema grandiflorum kitam) cv. ‘Candid’. Biology Life Sciences Forum., v.4, n.21, p.1-8, 2021. https://doi.org/10.3390/IECPS2020-08780

EECKHAUT, T.; VAN HOUTVEN, W.; BRUZNICAN, S.; LEUS, L.; VAN HUYLENBROECK, J. Somaclonal variation in Chrysanthemum × morifolium protoplast regenerants. Frontiers in Plant Science, v.11, p.1-16, 2020. https://doi.org/10.3389/fpls.2020.607171

HASPOLAT, G.; KUNTER, B; KANTOGLU, Y. Determination of mutagenic-sensitivity and induced variability in the mutant populations of ‘Bacardi’ chrysanthemum cultivar. Genetika, v.54, n.1, p.161-172, 2022. https://doi.org/10.2298/GENSR2201147H

HASPOLAT, G.; SENEL, U.; TANER KANTOGLU, Y.; KUNTER, B.; GUNCAG, N. In vitro mutation on chrysanthemums. Acta Horticulturae, v.1263, p.261-266, 2019. https://doi.org/10.17660/ActaHortic.2019.1263.34

IAEA, International Atomic Energy Agency, Mutant varieties database. Available at: <https://mvd.iaea.org/>Accessed on: Jan 22nd 2022.

JAIN, S.M. Mutagenesis in crop improvement under the climate change. Romanian Biotechnological Letters, v.15, n.2, p 88-106, 2010.

KAUL, A.; KUMAR, S.; THAKUR, M.; GHANI, M. Gamma ray-induced in vitro mutations in flower colour in Dendranthema grandiflora Tzelev. Floriculture and Ornamental Biotechnology, v.5, n.1, p.71-73, 2011.

KAZAZ, S.; KILIC, T.; DOGAN, E.; YALCIN; MENDI, Y.; KARAGUZEL, O. Situation of present and future in ornamental plants production. IX. Turkey Agriculture Engineering Technical Book. Ankara: TMMOB Agriculture Engineering Association, p.673-698. (in Turkish) 2020.

KHARKWALL, M. Mutation breeding for crop improvement. Geography and You, v.102, p.27-32, 2017.

KISHI-KABOSHI, M.; AIDA, R.; KATSUTOMO, S. Generation of gene-edited Chrysanthemum morifolium using multicopy transgenes as targets and markers. Plant and Cell Physiology, v.58, n.2, p.216-226, 2017. https://doi.org/10.1093/pcp/pcw222

KORNERUP, A.; WANSCHER, J.H.; PAVEY, D. Methuen handbook of colour. London: Methuen, 1978. 252p.

KUMARI, S.; DHIMAN, S.R.; GUPTA Y.C. Advances in breeding of Chrysanthemum: A Review. International Journal of Current Microbiology and Applied Sciences, v.8, n.08, p.1631-1643, 2019. https://doi.org/10.20546/ijcmas.2019.808.193

MANDAL, A.K.A.; CHAKRABARTY, D.; DATTA, S.K. In vitro isolation of solid novel flower colour mutants from induced chimeric ray florets of chrysanthemum. Euphtica, v.114, p.9-12, 2000a.

MANDAL, A.K.A.; CHAKRABARTY, D.; DATTA, S.K. Application of in vitro techniques in mutation breeding of chrysanthemum. Plant cell, Tissue and Organ Culture, v.60, p.33-38, 2000b.

MELSEN, K.; VAN DE WOUW, M.; CONTRERAS, R. Mutation breeding in ornamentals, American Society of Horticultural Science. Mutation breeding in ornamentals, v.56, n.10, p.1154-1165, 2021. https://doi.org/10.21273/hortsci16001-21

MILER, N.; JĘDRZEJCZYK, I. Chrysanthemum plants regenerated from ovaries: a study on genetic and phenotypic variation. Turkish Journal of Botany, v.42, n.3, p.289- 297, 2018. https://doi.org/10.3906/bot-1707-19

MURASHIGE, T.; SKOOG, F. A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiologia Plantarum, v.15, p.473-479, 1962.

NAGATOMI, S.; DEGGI K. Mutation breeding of chrysanthemum by gamma field irradiation and in vitro culture. In: SHU Q.Y. Induced plant mutations in the genomics era. Rome: Food and agriculture organization of the United Nations, 2009. p.258-261.

PATIL, U.H.; KARALE, A.R.; KATWATE, S.M.; PATIL, M.S. Mutation breeding in chrysanthemum (Dendrathema grandiflora T.). Journal of Pharmacognosy and Phytochemistry, v.6, n.6, p.230-232, 2017.

PURIPUNYAVANICH, V.; PIRIYAPHATTARAKIT, A.; CHANCHULA, N.; TAYCHASINPITAK, T. Mutation induction of in vitro Chrysanthemum by gamma irradiation. Chiang Mai Journal of Science, v.46, n.3, p.609-617, 2019.

ROHLF, F.J. NTSYSpc: Numerical Taxonomy and Multivariate Analysis System, Version 2.1. New York: Exeter Software, 2000.

SARSU, F.; PENNA, S.; KUNTER, B.; IBRAHIM, R. Mutation breeding for vegetatively propagated crops in: Manual on mutation breeding third edition. In: SPENCER- LOPES, M.M.; FORSTER, B.P.; JANKULOSKI, L. Plant Breeding and Genetics Subprogramme. Vienna: Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Austria Food and Agriculture Organization of the United Nations, 2018. p.157-174.

SHAFIEI, M.R.; HATAMZADEH, A.; AZADI, P.; SAMIZADEH, L.H. Mutation induction in chrysanthemum cut flowers using gamma irradiation method. Journal of Ornamental Plants, v.9, n.2, p.143-151, 2019.

SHAHRAJABIAN, M.H.; SUN, W.; ZANDI, P.; CHENG, Q. A review of chrysanthemum, the eastern queen in traditional Chinese medicine with healing power in modern pharmaceutical sciences, Applied Ecology and Environmental Research, v.17, n.6, p.13355-13369, 2019.

SU J.; JIANG J.; ZHANG F.; LIU Y.; DING L.; CHEN S.; CHEN F. Current achievements and future prospects in the genetic breeding of chrysanthemum: a review. Horticulture Research, v.6, n.109, p.1-19, 2019. https://doi.org/10.1038/s41438-019-0193-8

SUPRASANNA, P.; JAIN, S.M. Biotechnology and induced mutations in ornamental plant improvement. Acta Horticulturae, v.1334, p.1-12, 2022. https://doi.org/10.17660/ActaHortic.2022.1334.1

VERMA A.K.; PRASAD, K.V. Organogenesis and anatomical study of gamma rays induced mutant of chrysanthemum (Chrysanthemum morifolium Ramat.) from ray florets. Research Journal of Biotechnology, v.14, n.3, p.44-53, 2019.

WU, J-H.; ZHANG, J.; LAN, F.; FAN, W-F.; LI, W. Morphological, cytological, and molecular variations induced by gamma rays in ground-grown chrysanthemum ‘Pinkling’. Canadian Journal of Plant Science, v.100, n.1, p.68-77, 2020. https://doi.org/10.1139/cjps-2019-0064

ZALEWSKA, M.; TYMOSZUK, A.; MILER, N. New chrysanthemum cultivars as a result of in vitro mutagenesis with the application of different explant types. Acta Scientiarum Polonorum Hortorum Cultus, v.10, n.2, p.109-123, 2011.

ZALEWSKA, M.; MILER, N.; TYMOSZUK, A.; DRZEWIECKA, B.; WINIECKI, J. Results of mutation breeding activity on Chrysanthemum × grandiflorum (Ramat.) Kitam. Poland, Electronic Journal of Polish Agricultural Universities, v.13, n.4, p.27-35, 2010.

ZHANG, M.; HUANG, H.; WANG, Q.; DAI, S. Cross breeding new cultivars of early-flowering multiflora Chrysanthemum based on mathematical analysis. HortiScience, v.53, n.4, p.421-426, 2018. https://doi.org/10.21273/hortsci12769-17

Downloads

Publicado

2022-12-08

Edição

Seção

Artigos