Exposição de três espécies de Cattleya (Orchidaceae) a pleno sol: efeito sobre sua plasticidade fisiológica e resposta a mudanças nas condições de luz

Autores

DOI:

https://doi.org/10.1590/2447-536X.v29i1.2527

Palavras-chave:

Fluorescência da clorofila a, manchas solares, orquídeas

Resumo

Com o objetivo de estabelecer uma ligação entre a história evolutiva e os atributos fotoquímicos, medidas de fluorescência da clorofila (Chl) a foram feitas em Cattleya warneri, C. shofieldiana e C. harrisoniana expostas à alta irradiância por 5, 35 e 120 min (T5, T35 e T120, respectivamente). As seguintes questões são abordadas: (1) O aumento da dissipação de energia é suficiente para contrabalançar o excesso de energia que impulsiona a fotossíntese em diferentes tempos de exposição à alta irradiância? (2) Existe influência da incidência e duração da radiação luminosa em espécies de Cattleya a pleno sol, em comparação com espécies de Cattleya submetidas a baixa irradiância? A maior fluorescência variável relativa no ponto J (Vj) seguida do menor rendimento quântico do transporte de elétrons (ψEo) indicam o acúmulo de Quinona A (QA) reduzida proporcionalmente ao tempo de exposição às manchas solares em C. Waeneri. Os maiores valores de índice de desempenho (PIABS) e do índice de plasticidade em C. schofieldiana indicam maior eficiência na modulação do aparato fotossintético em resposta às manchas solares. C. harrisoniana apresenta menor índice de plasticidade, supressão da fluorescência máxima (Fm) e nenhuma recuperação de PIABS após exposição às manchas solares. Este estudo evidencia a importância da plasticidade fisiológica na distribuição geográfica atual de Cattleya em resposta a pulsos de luz em espécies derivadas de habitats fragmentados e a manutenção do sombreamento para espécies de clados mais primitivos.

Downloads

Não há dados estatísticos.

Biografia do Autor

Clodoaldo Leites Pinheiro, Embrapa Pecuária Sul

Laboratório de Estudos em Agroecologia e Recursos Naturais, Bagé-RS, Brazil.

Jadson Bonini Zampirollo, Universidade Federal do Espírito Santo

Laboratório de Ecofisiologia Vegetal, São Mateus-ES, Brazil.

Marcel Merlo Mendes, Universidade Federal do Espírito Santo

Laboratório de Ecofisiologia Vegetal, São Mateus-ES, Brazil.

Vinícius Fonseca dos Santos, Universidade Federal do Espírito Santo

Laboratório de Ecofisiologia Vegetal, São Mateus-ES, Brazil.

João Paulo Rodrigues Martins, Polish Academy of Sciences

Institute of Dendrology, Kórnik, Wielkopolska, Poland.

Diolina Moura Silva, Universidade Federal do Espírito Santo

Núcleo de Estudos da Fotossíntese, Vitória-ES, Brazil.

Mônica Maria Pereira Tognella, Universidade Federal do Espírito Santo

Laboratório de Ecofisiologia Vegetal, São Mateus-ES, Brazil.

Daniela Cassol, DOE Joint Genome Institute

Lawrence Berkeley National Laboratory, Berkeley, United States.

Antelmo Raph Falqueto, Universidade Federal do Espírito Santo

Laboratório de Ecofisiologia Vegetal, São Mateus-ES, Brazil.

Referências

AKHTER, M.S.; NOREEN, S.; MAHMOOD, S.; ATHAR H-UR-R.; ASHRAF, M.; ALSAHLI, A.A.; AHMAD, P. Influence of salinity stress on PSII in barley (Hordeum vulgare L.) genotypes, probed by chlorophyll-a fluorescence. Journal of King Saud Universtity - Science, v.33, n.1, article 101239, 2021. https://doi.org/10.1016/j.jksus.2020.101239

ALVARES, C.A.; STAPE, J.L.; SENTELHAS, P.C.; GONÇALVES, J.L.M.; SPAROVEK, G. Koppen’s climate classification map for Brazil. Meteorologische Zeitschrift, v.22, p.711-728, 2013. https://doi.org/10.1127/0941-2948/2013/0507 BO, L.; QING, L. Plastic responses of 4 tree species of successional subalpine coniferous Forest serals to different light regimes. Acta Ecologica Sínica, v.28, n.10, p.4665-4675, 2008. https://doi.org/10.1016/S1872-2032(09)60003-2

BUSSOTTI, F.; GEROSA, G.; DIGRADO, A.; POLLASTRINI, M. Selection of chlorophyll parameters as indicators of photosynthetic efficiency in large scale plant ecological studies. Ecological Indicators, v.108, article 105686, 2020. https://doi.org/10.1016/j.ecolind.2019.105686

CAMPOS, L.J.M.; ALMEIDA, R.E.M.; SILVA, D.D.; COTA, L.V.; NAOE, A.M.L.; PELUZIO, J.M.; BERNARDES, F.P.; COSTA, R.V. Physiological and biophysical alterations in maize plants caused by Colletotrichum graminicola infection verified by OJIP study. Tropical Plant Pathology, v.46, p.674-683, 2021. https://doi.org/10.1007/s40858-021-00465-x

CHEN, X.; ZHOU, Y.; CONG, Y.; ZHU, P.; XING, J.; CUI, J.; XU, W.; SHI, Q.; DIAO, M.; LIU, H-Y. Ascorbic acid-induced photosynthetic adaptability of processing tomatoes to salt stress probed by fast OJIP fluorescence rise. Frontiers in Plant Science, v.12, p.1-17, article 594400, 2021. https://doi.org/10.3389/fpls.2021.594400

CRAINE, J.M.; DYBZINSKI, R. Mechanisms of plant competition for nutrients, water and light. Functional Ecology, v.27, v.27, p.833-840, 2013. https://doi.org/10.1111/1365-2435.12081

DIAS, D.P.; MARENCO, R.A. Photoinhibition of photosynthesis in Minquartia guianensis and Swietenia macrophyla infered by monitoring the initial fluorescence. Photosynthetica, v.44, v.2, p.235-240, 2006. https://doi.org/10.1007/s11099-006-0013-x

DURAND, M.; STANGL, Z.R.; SALMON, Y.; BURGESS, A.J.; MURCHIE, E.H.; ROBSON, T.M. Sunflecks in the upper canopy: dynamics of light-use efficiency in sun and shade leaves of Fagus sylvatica. New Phytologist, v.235, n.4, p.1365-378, 2022. https://doi-org.ez43.periodicos.capes.gov.br/10.1111/nph.18222

FENG, J-Q.; HUANG, W.; WANG, J-H.; ZHANG, S-B. Different strategies for photosynthetic regulation under fluctuating light in two sympatric Paphiopedilum species. Cells, v.10, n.6, p.1451-1463, 2021. https://doi.org/10.3390/cells10061451

KALAJI, H.M.; SCHANSKER, G.; BRESTIC, M.; BUSSOTTI, F.; CALATAYUD, A.; FERRONI, L., GOLTSEV, V.; GUIDI, L.; JOJOO, A.; LI, P.; OSCIALE, P.; MISHRA, V.K.; MISRA, A.N.; NEBAUER, S.G.; PANCALDI, S.; PENELLA, C.; PALASTRINI, M.; SURESH, K.; TAMBUSSI, E.; YANNICCARI, M.; ZIVCAK, M.; CETNER, M.D.; SAMBORSKA, I.A.; STIRBET, A.; OLSOVSKA, K.; KUNDERLIKOVA, K.; SHELONZEK, H.; RUSINOWSKI, S.; BABA, W. Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynthesis Research, v.132, n.1, p.13-66, 2017. https://doi.org/10.1007/s11120-016-0318-y

KÜKENBRINCK, D.; SCHNEIDER F.D.; SCHMID, B.; GASTELLU-ETCHEGORRY, J-P.; SCHAEPMAN, M.E.; MORSDORF, F. Modelling of three-dimensional, diurnal light extinction in two contrasting forests. Agricultural and Forest Meteorology, v. 296, p.108230, 2021. https://doi.org/10.1016/j.agrformet.2020.108230

KUMAR, D.; SINGH, D.; RAJ, S.; SONI, V. Cholorophyll a fluorescence kinetics of mung bean (Vigna radiata L.) grown under artificial continuous light. Biochemistry and Biophysics Reports, v.24, p.100813, 2020. https://doi.org/10.1016/j.bbrep.2020.100813

LEME, G.M.; RAMOS, F.N.R.; PEREIRA, F.J.; POLO, M. High levels of anatomical and physiological leaf plasticity of Ocotea odorifera (Lauraceae) in response to different radiation intensities. Botany, v.99, n.1, p.23-32, 2021. https://dx.doi.org/10.1139/cjb-2019-0128

LÜTTGE, U. Physiological ecology of tropical plants. Berlin, Heidelberg: Springer - Verlag, 1997. 387 p.

PEARCY R.W.; WAY, D.A. Two decades of sunfleck research: looking back to move forward. Tree Physiology, v.32, n.9, p.1059-1061, 2012. https://doi.org/10.1093//j.agrformet.2020.108230treephys/tps084

PINHEIRO, C.L.; ROSA, L.M.G.; FALQUETO, A.R. Resilience in the functional responses of Axonopus affinis Chase (Poaceae) to diurnal light variation in an overgrazed grassland. Agricultural and Forest Meteorology, v.266-267, p.140-147, 2019. https://doi.org/10.1016/j.agrformet.2018.12.007

SANTOS, E.R.; MARTINS, J.P.R.; RODRIGUES, L.C.A.; GONTIJO, A.B.P.L.; FALQUETO, A.R. Morphophysiological responses of Billbergia zebrina Lindl. (Bromeliaceae) in function of types and concentrations of carbohydrates during conventional in vitro culture. Ornamental Horticulture, v.26, n.1, p.18- 34, 2020. https://doi.org/10.1590/2447-536X.v26i1.2092

SHAO, R.; WANG, K.; SHANGGUAN, Z. Cytokinin-induced photosynthetic adaptability of Zea mays L. to drought stress associated with nitric oxide signal: probed by ESR spectroscopy and fast OJIP fluorescence rise. Journal of Plant Physiology, v.167, n.6, p.472-479, 2010. https://doi.org/10.1016/j.jplph.2009.10.020

SPANIC, V.; MLINARIC, S.; ZDUNIC, Z.; KATANIC, Z. Field study of the effects of two different environmental conditions on wheat productivity and chlorophyll fluorescence induction (OJIP) parameters. Agriculture, v.11, n11, p.1154-1169, 2021. https://doi.org/10.3390/agriculture11111154

STRASSER, R.J.; TSIMILLI-MICHAEL, M.; SRIVASTAVA, A. Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou, G.C.; Govindjee. (eds). Chlorophyll a fluorescence: a signature of photosynthesis. Advances in Photosynthesis and Respiration Series. Rotterdan: Kluwer Academic Publishers, 2004. pp.321-362.

TSIMILLI-MICHAEL, M. Revisiting JIP-test: An educative review on concepts, assumptions, aproximations, definitions and terminology. Photosynthetica, v.58, special issue, p.275-292, 2020. https://doi.org/10.32615/ps.2019.150

VAN DEN BERG, C. Nomenclatural notes on Laeliinae-VI. Further combinations in Cattleya (Orchidaceae). Neodiversity, v.9, n.1, p.4-5, 2016. https://doi.org/10.13102/neod.91.2.

VAN DEN BERG, C.; CRIBB P.J.A. A brief history of Cattleya. In: VAN DEN BERG C. Distribution, biogeography and ecology of Cattleya species. Renziana, 45-57, 2014.

VAN DEN BERG, C.; HIGGINS, W.E.; DRESSLER, R.L.; WHITTEN, W.M.; SOTO-ARENAS, M.A; CHASE, M.W. A phylogenetic study of Laeliinae (Orchidaceae) based on combined nuclear and plastid DNA sequences. Annals of Botany, v.104, n.3, p.417-430, 2009. https://doi.org/10.1093/aob/mcp101

VAN HEERDEN, P.D.R.; SWANEPOEL, J.W.; KRÜGER, G.H.J. Modulation of photosynthesis by drought in two desert scrub species exhibiting C3-mode CO2 assimilation. Environmental and Experimental Botany, v.61, n.2, p.124-136, 2007. https://doi.org/10.1016/j.envexpbot.2007.05.005

WAY D.A.; PEARCY R.W. Sunflecks in trees and forests: from photosynthetic physiology to global change biology. Tree Physiology, v.32, n.9, p.1066-1081, 2012. https://doi.org/10.1093/treephys/tps064

WU, G.; MA, L.; SAYRE, R.; LEE, C-H. Identification of the optimal light harvesting antenna size for high-light stress mitigation in plants. Frontiers in Plant Science, v.11, article 505, 2020. https://10.3389/fpls.2020.00505

XIAO, W.; WANG, H.,; LIU, W.; WANG, X; GUO, Y.; STRASSER, R.J.; QIANG, S.; CHEN, S.; HU, Z. Special issue in honour of Prof. Reto J. Strasser - Action of alamethicin in photosystem II probed by the fast chlorophyll fluorescence. Photosynthetica, v.58, p.358- 368, 2020. https://doi.org/10.32615/ps.2019.172

ZAMPIROLLO, J.B.; PINHEIRO, C.L.; SANTOS, V.F.; BRAGA, P.C.S.; MARTINS, J.P.R.; SILVA, D.M.; FALQUETO, A.R. Analyses of OJIP transients in leaves of two epiphytic orchids under drought stress. Ornamental Horticulture, v.27. n.4, p.556-565, 2021. https://doi.org/10.1590/2447-536X.v27i4.2334

ZHANG, L.X.; CHANG, Q.S.; HOU, X.G.; CHEN, S.D.; ZHANG, Q.M.; WANG, J.Z.; LIU, S.D.; LI, S. Biochemical and photosystem characteristics of wild-type and Chl b-deficient mutant in tree peony (Paeonia suffruticosa). Photosynthetica, v.59, n.2, p.56-265, 2021. https://doi.org/10.32615/ps.2021.019

ZUSHI, K.; MATSUZOE, N. Using of chlorophyll a fluorescence OJIP transients for sensing salt stress in the leaves and fruits of tomato. Scientia Horticulturae, v.219, p.216-221, 2017. https://doi.org/10.1016/j.scienta.2017.03.016

Downloads

Publicado

2023-03-27

Edição

Seção

Artigos