Aplicação de melatonina e sacarose no prolongamento da vida de vaso de flores de corte de amarilis (Hippeastrum hybridum Herb)
DOI:
https://doi.org/10.1590/2447-536X.v29i4.2670Palavras-chave:
compostos fenólicos, fitoregulador, longevidade de flores, vida de vasoResumo
O presente trabalho investigou os efeitos da aplicação de melatonina individualmente e misturada com solução de sacarose na vida de vaso e nas alterações físico-químicas de flores de corte de amarílis. Hastes de amarilis com botões florais em pontos de colheita foram colocadas em vasos contendo diferentes soluções de manutenção: Melatonina (Mt; 0,01 mM), Sacarose (Suc; 4%), Melatonina + Sacarose (Mt + Suc; 0,01 mM + 4%) e Água destilada (Controle). Cada tratamento constou de 5 repetições, sendo uma haste de inflorescência por vaso. Os vasos permaneceram a 22 ± 3° C e iluminação constante de 13 µmol m-2.s-1 durante 14 dias. A imersão das hastes em Suc ou Mt + Suc retardou os processos iniciais de senescência de flor de corte de amarílis, prolongando por mais 2 dias sua vida de vaso, em relação às hastes sem uso desses conservantes (controle). Aumentando de 10 para 12 dias de conservação. Pois mantiveram mais estáveis a massa fresca, retardaram a degradação de pigmentos antocianinas e flavonoides, bem como, mantendo a estabilidade dos compostos fenólicos e carboidratos totais ao final de 14 dias. Esses achados confirmam o papel da melatonina como conservante de flores de corte. Todavia, o seu efeito conservante foi potencializado em amarílis, associado à sacarose. Mais trabalhos necessitam ser realizados para investigar mais profundamente quais mecanismos fisiológicos promovidos pela interação melatonina e sacarose na regulação da senescência das flores de amarilis cortadas, incluindo análise de expressão de genes e atividade do sistema antioxidante.
Downloads
Referências
ABDELKADER, H.H. Postharvest physiology of cut Hippeastrum (Hippeastrum hybridum Herb.) inflorescences. World Applied Sciences Journal, v.19, n.7, p.943-950, 2012. https://doi.org/10.5829/idosi.wasj.2012.19.07.2129
AGHDAM, M.S.; FARD, J.R. Melatonin treatment attenuates postharvest decay and maintains nutritional quality of strawberry fruits (Fragaria × anannasa cv. Selva) by enhancing GABA shunt activity. Food Chemistry, v.221, p.1650-1657, 2017. https://doi.org/10.1016/j.foodchem.2016.10.123
AGHDAM, M.S.; JANNATIZADEH, A.; NOJADEH, M.S.; EBRAHIMZADEH, A. Exogenous melatonin ameliorates chilling injury in cut anthurium flowers during low temperature storage. Postharvest Biology and Technology, v.148, p.184-191, 2019. https://doi.org/10.1016/j.postharvbio.2018.11.008
ALLEN, R.G.; PEREIRA, L.S.; RAES, D.; SMITH, M. Crop evapotranspiration-Guidelines for computing crop water requirements - FAO Irrigation and drainage paper 56, 1998, v.300, n.9, D05109 Available at: <https://www.fao.org/3/x0490e/x0490e00.html> Accessed on: August 6th 2023.
ARABIA, A.; MUNNÉ-BOSCH, S.; MUÑOZ, P. Melatonin triggers tissue-specific changes in anthocyanin and hormonal contents during postharvest decay of Angeleno plums. Plant Science, v.320, 111287, 2022. https://doi.org/10.1016/j.plantsci.2022.111287
ARNAO, M.B.; HERNÁNDEZ-RUIZ, J. Melatonin: A new plant hormone and/or a plant master regulator? Trends in Plant Science, v.24, n.1, p.38-48, 2019. https://doi.org/10.1016/j.tplants.2018.10.010
AZIMI, M.H.; ALAVIJEH, M.K. Morphological traits and genetic parameters of Hippeastrum hybridum. Ornamental Horticulture, v.26, n.4, p.579-590, 2020. https://doi.org/10.1590/2447-536X.V26I3.2153
BRITO, F.A.L.; DE ARAÚJO, Y.P.; MARCELINO, A.S.A.N.; FERREIRA, N.L.; FONSECA, K.S.; BRITO, A.M.S.S.; DA SILVA, T.G.F.; SIMÕES, A.D.N. Preparation and characterization of a biodegradable film from cactus Nopalea sp. Journal of the Professional Association for Cactus Development, v.24, p.185–202, 2022. https://doi.org/10.56890/jpacd.v24i.507
CARLSON, A.S.; DOLE, J.M.; MATTHYSSE, A.G.; HOFFMANN, W.A.; KORNEGAY, J.L. Bacteria species and solution pH effect postharvest quality of cut Zinnia elegans. Scientia Horticulturae, v.194, p.71-78, 2015. https://doi.org/10.1016/j.scienta.2015.07.044
CONVERT | EASYRGB. (n.d.). 2023. Available at: <http://www.easyrgb.com/en/convert.php#> Accessed on: August 6th 2023.
DA COSTA, L.C.; DE ARAUJO, F.F.; RIBEIRO, W.S.; DE SOUSA SANTOS, M.N.; FINGER, F.L. Postharvest physiology of cut flowers. Ornamental Horticulture, v.27, n.3, p.374-385, 2021. https://doi.org/10.1590/2447-536X.v27i3.2372
DIXON, R.A., PAIVAN.L. Stress-induced phenylpropanoid metabolism. Plant Cell, v.7, n.7, p.1085-1097, 1995.
DUBOIS, M.; GILLES, K.A.; HAMILTON, J.K.; REBERS, P.A.; SMITH, F. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, v.28, n.3, p.350-356, 1956. https://doi.org/10.1021/ac60111a017
EUGÊNIO, D.S.; FONSECA, K.S.; MARCELINO, A.S.A.N.; SILVA, V.N.S.E.; FERREIRA-SILVA, S.L.; BARROS-JÚNIOR, A.P.; SILVEIRA, F.P.M.; LOPES, W.A.R.; SANTOS, H.R.B.; SIMÕES, A.N. Phosphate fertilization as a modulator of enzymatic browning in minimally processed cassava. Journal of Agricultural and Food Chemistry, v.69, n.35, p.10058–10068, 2021. https://doi.org/10.1021/ACS.JAFC.1C02590/SUPPL_FILE/JF1C02590_SI_001.PDF
FAN, Y.; LI, C.; LI, Y.; HUANG, R.; GUO, M.; LIU, J.; SUN, T.; GE, Y. Postharvest melatonin dipping maintains quality of apples by mediating sucrose metabolism. Plant Physiology and Biochemistry, v.174, p.43-50, 2022. https://doi.org/10.1016/j.plaphy.2022.01.034
FRANCIS, F. J.Analysis ofAnthocyanins. In: MARKAKIS, P. Anthocyanins as Food Colors. New York: Academic Press. 1982. p.182-205.
HU, D.; ZHANG, X.; XUE, P.; NIE, Y.; LIU, J.; LI, Y.; WANG, C.; WAN, X. Exogenous melatonin ameliorates heat damages by regulating growth, photosynthetic efficiency and leaf ultrastructure of carnation. Plant Physiology and Biochemistry, v.198, 2023. https://doi.org/10.1016/j.plaphy.2023.107698
ICHIMURA, K.; NIKI, T.; MATOH, M.; NAKAYAMA, M. High temperature under low light conditions suppresses anthocyanin biosynthesis in snapdragon petals associated with decreased sugar levels. Scientia Horticulturae, v.290, 2021. https://doi.org/10.1016/j.scienta.2021.110510
ICHIMURA, K.; TAKADA, M.; OGAWA, K. Effects of treatments with nigerosyl malto oligosaccharide, glucose and sucrose on the vase life of cut snapdragon flowers. Scientia Horticulturae, v.291, 2022. https://doi.org/10.1016/j.scienta.2021.110565
LEZOUL, N.E.H.; SERRANO, M.; RUIZ-ARACIL, M.C.; BELKADI, M.; CASTILLO, S.; VALERO, D.; GUILLÉN, F. Melatonin as a new postharvest treatment for increasing cut carnation (Dianthus caryophyllus L.) vase life. Postharvest Biology and Technology, v.184, 2022. https://doi.org/10.1016/j.postharvbio.2021.111759
LI, Y.; ZHANG, L.; ZHANG, L.; NAWAZ, G.; ZHAO, C.; ZHANG, J.; CAO, Q.; DONG, T.; XU, T. Exogenous melatonin alleviates browning of fresh-cut sweet potato by enhancing anti-oxidative process. Scientia Horticulturae, v.297, 110937, 2022. https://doi.org/10.1016/j.scienta.2022.110937
LICHTENTHALER, H. K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. In Methods in Enzymology. Academic Press v.148, p350-382, 1987. https://doi.org/https://doi.org/10.1016/0076-6879(87)48036-1
LIN, X.; LI, H.; LIN, S.; XU, M.; LIU, J.; LI, Y.; HE, S. Improving the postharvest performance of cut spray ‘Prince’ carnations by vase treatments with nano-silver and sucrose. Journal of Horticultural Science and Biotechnology, v.94, n.4, p.513-521, 2019. https://doi.org/10.1080/14620316.2019.1572461
MARASEK-CIOLAKOWSKA, A.; SOCHACKI, D.; MARCINIAK, P. Breeding aspects of selected ornamental bulbous crops. Agronomy, v.11, n.9, 2021. https://doi.org/10.3390/agronomy11091709
MAZROU, R.M.; HASSAN, S.; YANG, M.; HASSAN, F.A.S. Melatonin preserves the postharvest quality of cut roses through enhancing the antioxidant system. Plants, v.11, n.20, 2022. https://doi.org/10.3390/plants11202713
MURCH, S.J.; KRISHNARAJ, S.; SAXENA, P.K. Tryptophan is a precursor for melatonin and serotonin biosynthesis in in vitro regenerated St. John’s wort (Hypericum perforatum L. cv. Anthos) plants. Plant Cell Reports, v.19, p.698-704, 2000. https://doi.org/10.1007/s002990000206
NORIKOSHI, R.; SHIBATA, T.; NIKI, T.; ICHIMURA, K. Sucrose treatment enlarges petal cell size and increases vacuolar sugar concentrations in cut rose flowers. Postharvest Biology and Technology, v.116, p.59-65, 2016. https://doi.org/10.1016/j.postharvbio.2016.01.003
SINGH, A.; KUMAR, J.; KUMAR, P. Effects of plant growth regulators and sucrose on post harvest physiology, membrane stability and vase life of cut spikes of gladiolus. Plant Growth Regulation, v.55, n.3, p.221-229, 2008. https://doi.org/10.1007/s10725-008-9278-3
SPRICIGO, P.C.; PILON, L.; TRENTO, J.P.; DE MOURA, M.R.; BONFIM, K.S.; MITSUYUKI, M.C.; MATTOSO, L.H.C.; FERREIRA, M.D. Nano-chitosan as an antimicrobial agent in preservative solutions for cut flowers. Journal of Chemical Technology and Biotechnology, v.96, n.8, p.2168-2175, 2021. https://doi.org/10.1002/jctb.6766
SUN, S.; LIU, A.; LI, Z.; GUO, T.; CHEN, S.; AHAMMED, G. J. Anthocyanin synthesis is critical for melatonin-induced chromium stress tolerance in tomato. Journal of Hazardous Materials, v.453, 131456, 2023. https://doi.org/10.1016/j.jhazmat.2023.131456
XIANG, D.; NGUYEN, C.D.; FELTER, L.; CLARK, D.; HUO, H. The effects of preharvest LED light, melatonin and AVG treatments on the quality of postharvest snapdragon and vase life. Journal of Floriculture and Landscaping, v.6, p.14-19, 2020. https://doi.org/10.25081/jfcls.2020.v6.6236
ZHANG, C.; FU, J.; WANG, Y.; GAO, S.; DU, D.; WU, F.; GUO, J.; DONG, L. Glucose supply improves petal coloration and anthocyanin biosynthesis in Paeonia suffruticosa ‘Luoyang Hong’ cut flowers. Postharvest Biology and Technology, v.101, p.73-81, 2015. https://doi.org/10.1016/j.postharvbio.2014.11.009
ZHANG, Y.; HUBER, D. J.; HU, M.; JIANG, G.; GAO, Z.; XU, X.; JIANG, Y.; ZHANG, Z. Delay of postharvest browning in litchi fruit by melatonin via the enhancing of antioxidative processes and oxidation repair. Journal of Agricultural and Food Chemistry, v.66, n.28, p.7475- 7484, 2018. https://doi.org/10.1021/acs.jafc.8b01922
ZHAO, D.; WANG, R.; MENG, J.; LI, Z.; WU, Y.; TAO, J. (2017). Ameliorative effects of melatonin on dark-induced leaf senescence in gardenia (Gardenia jasminoides Ellis): Leaf morphology, anatomy, physiology and transcriptome. Scientific Reports, v.7, n.1, 10423, 2017 https://doi.org/10.1038/s41598-017-10799-9
ZHOU, C.; LUO, L.; MIAO, P.; DONG, Q.; CHENG, H.; WANG, Y.; LI, D.; PAN, C. A novel perspective to investigate how nanoselenium and melatonin lengthen the cut carnation vase shelf. Plant Physiology and Biochemistry, v.196, p.982-992, 2023. https://doi.org/10.1016/j.plaphy.2023.02.033
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2023 Ornamental Horticulture
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.