Exploração quantitativa da colonização de micorrizas arbusculares em Dactylorhiza hatagirea (D.Don) Soó na Caxemira Himalaia

Autores

DOI:

https://doi.org/10.1590/2447-536X.v30.e242723

Palavras-chave:

fungos micorrízicos arbusculares, nitrogênio, ciclagem de nutrientes, orquídea himalaia, fósforo

Resumo

As micorrizas, associadas exclusivamente às orquídeas, desempenham um papel crucial no crescimento das plantas, nas interações competitivas e na proteção contra patógenos. Este estudo teve como objetivo avaliar quantitativamente a taxa de colonização de fungos micorrízicos arbusculares (FMA) em Dactylorhiza hatagirea em três locais localizados na região de Caxemira (Himalaia) : Gulmarg, Sonamarg e Pahalgam. Além disso, examinar parâmetros do solo como temperatura, precipitação, pH, carbono orgânico, fósforo, potássio e nitrogênio. As pontas das raízes foram coletadas a uma profundidade de 0-20 cm e após armazenadas em sacos de polietileno estéreis, refrigeradas a 4±1 °C. Nossos resultados mostraram uma variação significativa na colonização micorrízica nos três locais, sendo que Pahalgam apresentou o valor mais alto com 78%, seguido por Gulmarg com 73% e Sonamarg com 57%. A Análise de Componentes Principais (ACP) revelou 69,5% de variação nas variáveis ambientais e de solo. Correlações positivas foram observadas entre pH, nitrogênio, potássio e carbono orgânico, enquanto o fósforo foi negativamente correlacionado com potássio e nitrogênio. Os locais Gulmarg e Pahalgam foram semelhantes nas características do solo, enquanto Sonamarg exibiu diferenças significativas. O fósforo correlacionou-se positivamente com Sonamarg, mas negativamente com Pahalgam e Gulmarg, enquanto outros parâmetros do solo mostraram tendências opostas. O estudo destaca a importância da colonização de FMA na compreensão e melhoria das interações planta-micróbio em ecossistemas terrestres, destacando o seu papel na ciclagem de nutrientes e na assimilação de elementos essenciais como o fósforo e nitrogênio.

Downloads

Não há dados estatísticos.

Biografia do Autor

Bilal Ahmad Dar, University of kashmir

Department of Botany, Mycology and Microbiology, Section of Plant Pathology, Jammu and Kashmir, India.

Abdul Hamid Wani, University of Kashmir

Department of Botany, Mycology and Microbiology, Section of Plant Pathology, Jammu and Kashmir, India.

Rukhsana Qadir, University of Kashmir

Department of Botany, Mycology and Microbiology, Section of Plant Pathology, Jammu and Kashmir, India.

Mohd Yaqub Bhat, University of Kashmir

Department of Botany, Mycology and Microbiology, Section of Plant Pathology, Jammu and Kashmir, India.

Referências

ABDALLA, M.; BITTERLICH, M.; JANSA, J.; PÜSCHEL, D.; AHMED,M. A. The role of arbuscular mycorrhizal symbiosis in improving plant water status under drought. Journal of Experimental Botany, v.74, n.16, p.4808-4824, 2023. https://doi.org/10.1093/jxb/erad249

BABIKOVA, Z.; GILBERT, L.; BRUCE, T.; DEWHIRST, S.Y.; PICKETT, J.A.; JOHNSON, D. Arbuscular mycorrhizal fungi and aphids interact by changing host plant quality and volatile emission. Functional Ecology, v.28, p.375-385, 2014. https://doi.org/10.1111/1365-2435.12181

BEGUM, N.; QIN, C.; AHANGER, M.A.; RAZA, S.; KHAN, M.I.; ASHRAF, M.; AHMED, N.; ZHANG, L. Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance. Frontiers Plant Science, v.10, p.1068, 2019. https://doi.org/10.3389/fpls.2019.01068

BERRUTI, A.; LUMINI, E.; BALESTRINI, R.; BIANCIOTTO, V. Arbuscular mycorrhizal fungi as natural biofertilizers: let’s benefit from past successes. Frontiers in Microbiology, v.6, p.1559, 2016. https://doi.org/10.3389/fmicb.2015.01559

BHANTANA, P.; RANA, M.S.; SUN, X.C.; MOUSSA, M.G.; SALEEM, M.H.; SYAIFUDIN, M.; HU, C.X. Arbuscular mycorrhizal fungi and its major role in plant growth, zinc nutrition, phosphorous regulation and phytoremediation. Symbiosis, v.84, p.19-37, 2021. https://doi.org/10.1007/s13199-021-00756-6

CHIU, C.H.; PASZKOWSKI, U. Mechanisms and impact of symbiotic phosphate acquisition. Cold Spring Harbor Perspectives in Biology, v.11, n.6, a034603, 2019. https://doi.org/10.1101/cshperspect.a034603

IQBAL, B.; LI, G.; ALABBOSH, K.F.; HUSSAIN, H.; KHAN, I.; TARIQ, M.; AHMAD, N. Advancing environmental sustainability through microbial reprogramming in growth improvement, stress alleviation, and phytoremediation. Plant Stress, p.100283, 2023. https://doi.org/10.1016/j.stress.2023.100283

KHALIQ, A.; PERVEEN, S.; ALAMER, K.H.; ZIA UL HAQ, M.; RAFIQUE, Z.; ALSUDAYS, I.M.; ALTHOBAITI, A.T.; SALEH, M.A.; HUSSAIN, S.; ATTIA, H. Arbuscular mycorrhizal fungi symbiosis to enhance plant–soil interaction. Sustainability, v.14, p.7840, 2022. https://doi.org/10.3390/su14137840

LEMANCEAU, P.; MARON, P.A.; MAZURIER, S.; MOUGEL, C.; PIVATO, B.; PLASSART, P.; WIPF, D. Understanding and managing soil biodiversity: a major challenge in agroecology. Agronomy for Sustainable Development, v.35, p.67-81, 2015. https://doi.org/10.1007/s13593-014-0247-0

LI, W.; LI, W.B.; XING, L.J.; GUO, S.X. Effect of arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) on microorganism of phenanthrene and pyrene contaminated soils. International Journal Phytoremediation, v.25, p.240-251, 2022. https://doi.org/10.1080/15226514.2022.2071832

MBODJ, D.; EFFA-EFFA, B.; KANE, A.; MANNEH, B.; GANTET, P.; LAPLAZE, L.; DIEDHIOU, A.; GRONDIN, A. Arbuscular mycorrhizal symbiosis in rice: Establishment, environmental control and impact on plant growth and resistance to abiotic stresses. Rhizosphere, v.8, p.12-26, 2018. https://doi.org/10.1016/j.rhisph.2018.08.003

PEÑUELAS, J.; SARDANS, J. Global change and forest disturbances in the Mediterranean basin: Breakthroughs, knowledge gaps, and recommendations. Forests, v.12, n.5, p.603, 202. https://doi.org/10.3390/f12050603

PHILLIPS, J.M.; HAYMAN, D. S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British mycological Society, v.55, n.1, p.158, 1970. https://doi.org/10.1016/S0007-1536(70)80110-3

QIN, Z.; ZHANG, H.; FENG, G.; CHRISTIE, P.; ZHANG, J.; LI, X.; GAI, J. Soil phosphorus availability modifies the relationship between AM fungal diversity and mycorrhizal benefits to maize in an agricultural soil. Soil Biology and Biochemistry, v.144, p.107790, 2020. https://doi.org/10.1016/j.soilbio.2020.107790

REZÁCOVÁ, V.; CZAKÓ, A.; STEHLÍK, M.; MAYEROVÁ, M.; ŠIMON, T.; SMATANOVÁ, M.; MADARAS, M. Organic fertilization improves soil aggregation through increases in abundance of eubacteria and products of arbuscular mycorrhizal fungi. Science Reports, v.11, p.12548, 2021. https://doi.org/10.1038/s41598-021-91653-x

ROBERTS, D.P.; MATTOO, A.K. Sustainable agriculture - Enhancing environmental benefits, food nutritional quality and building crop resilience to abiotic and biotic stresses. Agriculture, v.8, n.8 2018. https://doi.org/10.3390/agriculture8010008

SABOOR, A.; ALI, M.A.; HUSSAIN, S.; EL ENSHASY, H. A.; HUSSAIN, S.; AHMED, N.; DATTA, R. Zinc nutrition and arbuscular mycorrhizal symbiosis effects on maize (Zea mays L.) growth and productivity. Saudi Journal of Biological Sciences, v.28, n.11, p.6339-6351, 2021. https://doi.org/10.1016/j.sjbs.2021.06.096

SHARMA, K.; GUPTA, S.; THOKCHOM, S.D.; JANGIR, P.; KAPOOR, R. Arbuscular mycorrhiza-mediated regulation of polyamines and aquaporins during abiotic stress: deep insights on the recondite players. Frontiers in Plant Science, v.12, p.1072, 2021. https://doi.org/10.3389/fpls.2021.642101

SHRIVASTAVA, A.; JAIN, S. Dactylorhiza hatagirea (D. Don) Soo: Himalayan marsh orchid. In: Immunity Boosting Medicinal Plants of the Western Himalayas, 145-171. 2023 https://doi.org/10.1007/978-981-19-9501-9_6

SIDDIQUI, Z.A.; PICHTEL, J. Mycorrhizae: An overview. In: Mycorrhizae: Sustainable Agriculture and Forestry; Berlin/Heidelberg: Springer, 2008. p.1-35. https://doi.org/10.1007/978-1-4020-8770-7

UPADHAYAY, V.K.; SINGH, J.; KHAN, A.; LOHANI, S.; SINGH, A.V. Mycorrhizal mediated micronutrients transportation in food-based plants: A biofortification strategy. Mycorrhizosphere and Pedogenesis, p.1-24, 2019. https://doi.org/10.1007/978-981-13-6480-8_1

WAHAB, A.; MUHAMMAD, M.; MUNIR, A.; ABDI, G.; ZAMAN, W.; AYAZ, A.; REDDY, S.P.P. Role of arbuscular mycorrhizal fungi in regulating growth, enhancing productivity, and potentially influencing ecosystems under abiotic and biotic stresses. Plants, v.12, n.17, p.3102, 2023. https://doi.org/10.3390/plants12173102

ZAVAHIR, J.S.; WIJEPALE, P.C.; SENEVIRATNE, G. Role of microbial communities in plant–microbe interactions, metabolic cooperation, and self-sufficiency leading to sustainable agriculture. Role of Microbial Communities for Sustainability, p.1-35, 2021. https://doi.org/10.1007/978-981-15-9912-5_1

Downloads

Publicado

2024-08-30

Edição

Seção

Artigos