Ácido fúlvico melhora características morfofisiológicas e vida de vaso em Alstroemeria ‘Orange Queen’ cultivada sem solo

Autores

DOI:

https://doi.org/10.1590/2447-536X.v31.e312802

Palavras-chave:

Características bioquímicas, Bioestimulante, Índices de floração, Pigmentos fotossintéticos, Vida de vaso

Resumo

Este estudo avaliou o potencial do ácido fúlvico como um bioestimulante para aumentar os índices de floração, características bioquímicas e vida de vaso em Alstroemeria ‘Orange Queen’. Conduzido sob condições controladas de estufa, o experimento envolveu aplicações foliares de ácido fúlvico em concentrações de 50, 100 e 200 mg L-¹. Os resultados revelaram melhorias significativas em parâmetros-chave, particularmente com o tratamento de 100 mg L-¹. Esta concentração ótima aumentou notavelmente o diâmetro do broto, o comprimento do broto e os pesos fresco e seco do florete em comparação com o controle. Além disso, a aplicação de ácido fúlvico aumentou significativamente os teores de clorofila a clorofila b, clorofila total, carotenoides e antocianinas, melhorando assim a eficiência fotossintética e a pigmentação das flores. O maior acúmulo de carboidratos foi evidenciado pelo aumento dos níveis de açúcar solúvel nas folhas e pétalas, particularmente em 100 mg L-¹. Além disso, o ácido fúlvico estendeu significativamente a vida útil do vaso de flores cortadas, com a concentração de 100 mg L-¹ fornecendo o maior benefício. Essas descobertas ressaltam a eficácia do ácido fúlvico como um bioestimulante para otimizar características estéticas e fisiológicas em Alstroemeria. Ao promover o crescimento, melhorar a composição do pigmento e estender a longevidade das flores, o ácido fúlvico surge como uma ferramenta valiosa na horticultura ornamental. Palavras-chave: Características bioquímicas, Bioestimulante, Índices de floração, Pigmentos fotossintéticos, Vida de vaso.

Downloads

Não há dados estatísticos.

Biografia do Autor

Fereshteh Sahraie, Urmia University

Department of Horticultural Science, Faculty of Agriculture, Urmia, Iran.

Zohreh Jabbarzadeh, Urmia University

Department of Horticultural Science, Faculty of Agriculture, Urmia, Iran.

Jafar Amiri, Urmia University

Department of Horticultural Science, Faculty of Agriculture, Urmia, Iran.

Referências

AHMAD, S.; KHAN, J.A.; JAMAL, A. Response of pot marigold to different applied levels of humic acid. Journal of Horticulture and Plant Research, v.5, p.57-60, 2019. https://doi.org/10.18052/www.scipress.com/jhpr.5.57.

ALSUDAYS, I.M.; ALSHAMMARY, F.H.; ALABDALLAH, N.M.; ALATAWI, A.; ALOTAIBI, M.M.; ALWUTAYD K.M.; ALHARBI, M.M.; ALGHANEM S.M.S.; ALZUAIBR, F.M.; GHARIB, H.S.; AWAD-ALLAH, M.M.A. Applications of humic and fulvic acid under saline soil conditions to improve growth and yield in barley. BMC Plant Biology, v. 24, n.1, p.191, 2024. https://doi.org/10.1186/s12870-024-04863-6.

AMPONG, K.; HILAKARANTHNA, M.S.; GORIM, L.Y. Understanding the role of humic acids on crop performance and soil health. Frontiers in Agronomy, v.4, p.848621, 2022. https://doi.org/10.3389/fagro.2022.848621.

BALTAZAR, M.; CORREIA, S.; GUINAN, K.J.; SUJEETH, N.; BRAGANCA, R.; GONCALVES, B. 2021. Recent advances in the molecular effects of biostimulants in plants: An overview. Biomolecules, v.11, n.8, p.1096, 2021. https://doi.org/10.3390/biom11081096.

BAYAT, H.; SHAFIE, F.; AMINIFARD, M.H.; DAGHIGHI, S. Comparative effects of humic and fulvic acids as biostimulants on growth, antioxidant activity and nutrient content of yarrow (Achillea millefolium L.). Scientia Horticulturae, v.279, p.109912, 2021. https://doi.org/10.1016/j.scienta.2021.109912.

BRIDGEN, M.P. Alstroemeria. In: Van Huylenbroeck, J. (eds) Ornamental Crops. Handbook of Plant Breeding, vol 11. Springer, Cham, 2018. https://doi.org/10.1007/978-3-319-90698-0_10.

CHEN, X.; ZHANG, X.; CHEN, H.; XU, X. Physiology and proteomics reveal fulvic acid mitigates cadmium adverse effects on growth and photosynthetic properties of lettuce. Plant Science, v.323, p.111418, 2022. https://doi.org/10.1016/j.plantsci.2022.111418.

DHIMAN, M.R.; KASHYAP, B. Alstroemeria: Conservation, characterization, and evaluation in: Floriculture and Ornamental Plants. Springer Nature. pp. 117-151, 2022.

FENG, D.; JIA, X.; YAN, Z.; LI, J.; GAO, J.; XIAO, W.; SHEN, X.; SUN, X. Underlying mechanisms of exogenous substances involved in alleviating plant heat stress. Plant Stress, v.10, p.100288, 2023. https://doi.org/10.1016/j.stress.2023.100288.

GABER, M.; KASEM, M. Improving growth characteristics and vase life of Dendranthema grandiflorum ‘Flyer’ using humic and fulvic acids as biostimulants substances. Scientific Journal of Flowers and Ornamental Plants, v.9, p.87-102, 2022. https://doi.org/10.21608/sjfop.2022.248727.

GARG, S.; NAIN, P.; KUMAR, A.; JOSHI, S.; PUNETHA, H.; SHARMA, P.K.; SIDDIQUI, S.; ALSHAHRANI, M.O.; ALGOPISHI, U.B.; MITTAL, A. Next generation plant biostimulants & genome sequencing strategies for sustainable agriculture development. Frontiers in Microbiology, v.15, p.1439561, 2024. https://doi.org/10.3389/fmicb.2024.1439561.

PARVITRA, S.H.; HELMA, B.N.; CHANDRASHEKAR, S.Y.; KANTHARAJ, Y.; SHIVAPRASAD, M.; HEMANTH, K.P. Effect of vase chemicals at different concentration on longevity of Alstroemeria cut flower. International Journal of Advanced Biochemistry Research, v.SP-8, n.10, p.1421-1426. https://doi.org/10.33545/26174693.2024.v8.i10Sq.2736.

HASANUZZAMAN, M.; PARVIN, K.; BARDHAN, K.; NAHAR, K.; ANEE, T.I.; MASUD, A.A.C.; FOTOPOULOS, V. Biostimulants for the regulation of reactive oxygen species metabolism in plants under abiotic stress. Cells, v.10, n.10, p.2537, 2021. https://doi.org/10.3390/cells10102537.

IRIGOYEN, J.J.; EMERICH, D.W.; SANCHEZ-DIAZ, M. Water stress induced changes in concentration of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiologia Plantarum, v.84, p.55-60, 1992. https://doi.org/10.1111/j.1399-3054.1992.tb08764.x.

JEANDET, P.; FORMELA-LUBOIŃSKA, M.; LABUDDA, M.; MORKUNAS, I. The role of sugars in plant responses to stress and their regulatory function during development. International Journal of Molecular Science, v.23, n.9, p.5161, 2022. https://doi.org/10.3390/ijms23095161.

KISVARGA, S.; FARKAS, D.; BORONKAY, G.; NEMÉNYI, A.; ORLÓCI, L. Effects of biostimulants in horticulture, with emphasis on ornamental plant production. Agronomy, v. 12, p.1403, 2022. https://doi.org/10.3390/agronomy12051043.

KÖSSLER, S.; ARMAREGO-MARRIOTT, T.; TARKOWSKÁ, D.; TUREČKOVÁ, V.; AGRAWAL, S.; MI, J.; SOUZA, L.P.; SCHÖTTLER, M.A.; SCHADACH, A.; FRÖHLICH, A.; BOCK, R.; AL-BABILI, S.; RUF, S.; SAMPATHKUMAR, A.; MORENO, J.C. Lycopene β-cyclase expression influences plant physiology, development, and metabolism in tobacco plants. Journal of Experimental Botany, v.72, n.7, p.2544- 2569, 2021. https://doi.org/10.1093/jxb/erab029.

KUMAR, K.; DEBNATH, P.; SINGH, S.; KUMAR, N. An overview of plant phenolic and their involvement in abiotic stress tolerance. Stresses, v.3, p.570-585, 2023. https://doi.org/10.3390/stresses3030040.

LI, R.; HE, Y.; CHEN, J.; ZHENG, S.; ZHUANG, C. Research progress in improving photosynthetic efficiency. International Journal of Molecular Science, v.24, p.9286, 2023. https://doi.org/10.3390/ijms24119286.

LICHTENTHALER, H.K.; WELLBURN, A.R. Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. Biochemical Society Transactions, v.11, n.5, p.591- 592, 1987. https://doi.org/10.1042/bst0110591.

LIU, X.; YANG, J.; TAO, J.; YAO, R. Integrated application of inorganic fertilizer with fulvic acid for improving soil nutrient supply and nutrient use efficiency of winter wheat in a salt-affected soil. Applied Soil Ecology, v.170, p.104255, 2022. https://doi.org/10.1016/j.apsoil.2021.104255.

MANNINO, G.; GENTILE, C.; ERTANI, A.; SERIO, G.; BERTEA, C.M. Anthocyanins: biosynthesis, distribution, ecological role, and use of biostimulants to increase their content in plant foods - A Review. Agriculture, v.11, p.212, 2021. https://doi.org/10.3390/agriculture11030212.

MARINOVA, D.; RIBAROVA, F.; ATANASSOVA, M. Total phenolic and total flavonoids in Bulgarian fruits and vegetables. Journal of the University of Chemical Technology and Metallurgy, v.40, n.3, p.255- 260, 2005.

MAZZONI-PUTMAN, S.M.; BRUMOS, J.; ZHAO, C.; ALONSO, J.M.; STEPANOVA, AN. Auxin interactions with other hormones in plant development. Cold Spring Harbor Perspective in Biology, v.13, n.10, p.a039990, 2021. https://doi.org/10.1101/cshperspect.a039990.

MIRZAEE ESGANDIAN, N.; JABBARZADEH, Z.; RASOULI-SADAGHIANI, M.H. Investigation on some morphological and physiological characteristics of Gerbera jamesonii as affected by humic acid and nano-calcium chelate in hydroponic culture conditions. Journal of Ornamental Plants, v.10, n.1, p.1-13, 2020.

MOURA O.V.T.; BERBARA, R.L.L.; TORCHIA, D.F.O., SILVA, H.F.O.; CASTRO, T.A.V.; TAVARES, O.C.H.; RODRIGUES, N.F.; SANTOS, E.Z.L.A.; GARCIA, A.C. Humic foliar application as sustainable technology for improving the growth, yield, and abiotic stress protection of agricultural crops. A review. Journal of the Saudi Society of Agricultural Sciences, v.22, n.8, p.493-513, 2023. https://doi.org/10.1016/j.jssas.2023.05.001.

MUHAMMAD, I.; SHALMANI, A.; ALI, M.; YANG, Q.-H.; AHMAD, H.; LI, F.B. Mechanisms regulating the dynamics of photosynthesis under abiotic stresses. Frontiers in Plant Science, v.11, p.615942, 2021. https://doi.org/10.3389/fpls.2020.615942.

MUTUI, T.M.; EMONGOR, V.E.; HUTCHINSON, M.J. The effects of Gibberellin 4+7 on the vase life and flower quality of Alstroemeria cut flowers. Plant Growth Regulation, v.48, p. 207-214, 2006. https://doi.org/10.1007/s10725-006-0014-6.

NIKOOGOFTAR-SEDGHI, M.; RABIEI, V.; RAZAVI, F.; MOLAEI, S.; KHADIVI, A. Fulvic acid foliar application: a novel approach enhancing antioxidant capacity and nutritional quality of pistachio (Pistacia vera L.). BMC Plant Biology, v.24, n.1, p.241, 2024. https://doi.org/10.1186/s12870-024-04974-0.

RANJEETHA, R. Alstroemeria: an exotic cut flower. Krishi Science, v.5, n.3, p.80-83, 2024.

SADEGHI, S.; JABBARZADEH, Z. The effect of pre- and post-harvest sodium nitroprusside treatments on the physiological changes of cut Alstroemeria aurea ‘Orange Queen’ during vase life. BMC Plant Biology, v.24, p.678, 2024. https://doi.org/10.1186/s12870-024-05393-x.

SAHRAIE, F.; JABBARZADEH, Z.; AMIRI, J. Effect of fulvic acid on some morphological characteristics and leaf elements of Alstroemeria (Alstroemeria aurea ‘Orange Queen’). Flower and Ornamental Plants, v.9, n.1, p.17-30, 2024.

SAINI, R.K.; PRASAD, P.; LOKESH, V.; SHANG, X.; SHIN, J.; KEUM, Y.-S.; LEE, J.-H. Carotenoids: dietary sources, extraction, encapsulation, bioavailability, and health benefits - A review of recent advancements. Antioxidants, v.11, p.795, 2022. https://doi.org/10.3390/antiox11040795

SEYED HAJIZADEH, H.; BAYRAMI AGHDAM, S.; FAKHRGHAZI, H.; KARAKUS, S.; KAYA, O. Physico-chemical responses of Alstroemeria spp. cv. Rebecca to the presence of salicylic acid and sucrose in vase solution during postharvest life. BMC Plant Biology, v.24, n.121, 2024. https://doi.org/10.1186/s12870-024-04814-1.

SHARAYA, D.R.; NEHRA, A.; AGRAWALA, N., KHAN, N.A.; TUTEJA, N.; GILL, R.; GILL, S.S. Biostimulants in the alleviation of metal toxicity: an overview. Editor(s): Sarvajeet Singh Gill, Narendra Tuteja, Nafees A. Khan, Ritu Gill, In: Biostimulants and Protective Biochemical Agents, Biostimulants in Alleviation of Metal Toxicity in Plants, Academic Press, p.1-19, 2023. https://doi.org/10.1016/B978-0-323-99600-6.00017-7.

TURAN, M.; EKINCI, M.; KUL, R.; KOCAMAN, A.; ARGIN, S.; ZHIRKOVA, A.M.; PERMINOVA, I.V.; YILDIRIM, E. Foliar applications of humic substances together with Fe/Nano Fe to increase the iron content and growth parameters of spinach (Spinacia oleracea L.). Agronomy, v.12, p.2044, 2022. https://doi.org/10.3390/agronomy12092044.

WAGNER, G.J. Content and vacuole/ extra vacuole distribution of neutral sugars, free amino acids and anthocyanin in protoplasts. Plant Physiology, v.64, p.88-93, 1979. https://doi.org/10.1104/pp.64.1.88.

YAN, D.; WANG, J.; LU, Z.; LIU, R.; HONG, Y.; SU, B.; WANG, Y.; PENG, Z.; YU, C.; GAO, Y.; LIU, Z.; XU, Z.; DUAN, L.; LI, R. Melatonin-mediated enhancement of photosynthetic capacity and photoprotection improves salt tolerance in wheat. Plants, v. 12, p.3984, 2023. https://doi.org/10.3390/plants12233984.

YAO, L.; LIANG, D.; XIA, H.; PANG, Y.; XIAO, Q.; HUANG, Y.; ZHANG, W.; PU, C.; WANG, J.; LV, X. Biostimulants promote the accumulation of carbohydrates and biosynthesis of anthocyanins in ‘Yinhongli’ plum. Frontiers in Plant Science, v.13, p.1074965, 2023. https://doi.org/10.3389/fpls.2022.1074965.

YU, B.; WANG, L.; CUI, D.; GAO, W.; XUE, X.; NIE, P. Effects of fulvic acid on growth and nitrogen utilization efficiency in M9T337 seedlings. Plants, v.12, p.3937, 2023. https://doi.org/10.3390/plants12233937

ZULFIQAR, F.; MOOSA, A.; FERRANTE, A.; DARRAS, A.; SHETEIWY, M.S.; ALI, B.; ALTAF, M.A.; SOUFAN, W.; EL SABAGH, A. Borage leaf extract improves the vase life of cut gladiolus flowers by delaying the senescence process and reducing water stress. Postharvest Biology and Technology, v.210, p.112766, 2024. https://doi.org/10.1016/j.postharvbio.2024.112766.

Downloads

Publicado

2025-03-12

Edição

Seção

Artigos