Ácido fúlvico melhora características morfofisiológicas e vida de vaso em Alstroemeria ‘Orange Queen’ cultivada sem solo
DOI:
https://doi.org/10.1590/2447-536X.v31.e312802Palavras-chave:
Características bioquímicas, Bioestimulante, Índices de floração, Pigmentos fotossintéticos, Vida de vasoResumo
Este estudo avaliou o potencial do ácido fúlvico como um bioestimulante para aumentar os índices de floração, características bioquímicas e vida de vaso em Alstroemeria ‘Orange Queen’. Conduzido sob condições controladas de estufa, o experimento envolveu aplicações foliares de ácido fúlvico em concentrações de 50, 100 e 200 mg L-¹. Os resultados revelaram melhorias significativas em parâmetros-chave, particularmente com o tratamento de 100 mg L-¹. Esta concentração ótima aumentou notavelmente o diâmetro do broto, o comprimento do broto e os pesos fresco e seco do florete em comparação com o controle. Além disso, a aplicação de ácido fúlvico aumentou significativamente os teores de clorofila a clorofila b, clorofila total, carotenoides e antocianinas, melhorando assim a eficiência fotossintética e a pigmentação das flores. O maior acúmulo de carboidratos foi evidenciado pelo aumento dos níveis de açúcar solúvel nas folhas e pétalas, particularmente em 100 mg L-¹. Além disso, o ácido fúlvico estendeu significativamente a vida útil do vaso de flores cortadas, com a concentração de 100 mg L-¹ fornecendo o maior benefício. Essas descobertas ressaltam a eficácia do ácido fúlvico como um bioestimulante para otimizar características estéticas e fisiológicas em Alstroemeria. Ao promover o crescimento, melhorar a composição do pigmento e estender a longevidade das flores, o ácido fúlvico surge como uma ferramenta valiosa na horticultura ornamental. Palavras-chave: Características bioquímicas, Bioestimulante, Índices de floração, Pigmentos fotossintéticos, Vida de vaso.
Downloads
Referências
AHMAD, S.; KHAN, J.A.; JAMAL, A. Response of pot marigold to different applied levels of humic acid. Journal of Horticulture and Plant Research, v.5, p.57-60, 2019. https://doi.org/10.18052/www.scipress.com/jhpr.5.57.
ALSUDAYS, I.M.; ALSHAMMARY, F.H.; ALABDALLAH, N.M.; ALATAWI, A.; ALOTAIBI, M.M.; ALWUTAYD K.M.; ALHARBI, M.M.; ALGHANEM S.M.S.; ALZUAIBR, F.M.; GHARIB, H.S.; AWAD-ALLAH, M.M.A. Applications of humic and fulvic acid under saline soil conditions to improve growth and yield in barley. BMC Plant Biology, v. 24, n.1, p.191, 2024. https://doi.org/10.1186/s12870-024-04863-6.
AMPONG, K.; HILAKARANTHNA, M.S.; GORIM, L.Y. Understanding the role of humic acids on crop performance and soil health. Frontiers in Agronomy, v.4, p.848621, 2022. https://doi.org/10.3389/fagro.2022.848621.
BALTAZAR, M.; CORREIA, S.; GUINAN, K.J.; SUJEETH, N.; BRAGANCA, R.; GONCALVES, B. 2021. Recent advances in the molecular effects of biostimulants in plants: An overview. Biomolecules, v.11, n.8, p.1096, 2021. https://doi.org/10.3390/biom11081096.
BAYAT, H.; SHAFIE, F.; AMINIFARD, M.H.; DAGHIGHI, S. Comparative effects of humic and fulvic acids as biostimulants on growth, antioxidant activity and nutrient content of yarrow (Achillea millefolium L.). Scientia Horticulturae, v.279, p.109912, 2021. https://doi.org/10.1016/j.scienta.2021.109912.
BRIDGEN, M.P. Alstroemeria. In: Van Huylenbroeck, J. (eds) Ornamental Crops. Handbook of Plant Breeding, vol 11. Springer, Cham, 2018. https://doi.org/10.1007/978-3-319-90698-0_10.
CHEN, X.; ZHANG, X.; CHEN, H.; XU, X. Physiology and proteomics reveal fulvic acid mitigates cadmium adverse effects on growth and photosynthetic properties of lettuce. Plant Science, v.323, p.111418, 2022. https://doi.org/10.1016/j.plantsci.2022.111418.
DHIMAN, M.R.; KASHYAP, B. Alstroemeria: Conservation, characterization, and evaluation in: Floriculture and Ornamental Plants. Springer Nature. pp. 117-151, 2022.
FENG, D.; JIA, X.; YAN, Z.; LI, J.; GAO, J.; XIAO, W.; SHEN, X.; SUN, X. Underlying mechanisms of exogenous substances involved in alleviating plant heat stress. Plant Stress, v.10, p.100288, 2023. https://doi.org/10.1016/j.stress.2023.100288.
GABER, M.; KASEM, M. Improving growth characteristics and vase life of Dendranthema grandiflorum ‘Flyer’ using humic and fulvic acids as biostimulants substances. Scientific Journal of Flowers and Ornamental Plants, v.9, p.87-102, 2022. https://doi.org/10.21608/sjfop.2022.248727.
GARG, S.; NAIN, P.; KUMAR, A.; JOSHI, S.; PUNETHA, H.; SHARMA, P.K.; SIDDIQUI, S.; ALSHAHRANI, M.O.; ALGOPISHI, U.B.; MITTAL, A. Next generation plant biostimulants & genome sequencing strategies for sustainable agriculture development. Frontiers in Microbiology, v.15, p.1439561, 2024. https://doi.org/10.3389/fmicb.2024.1439561.
PARVITRA, S.H.; HELMA, B.N.; CHANDRASHEKAR, S.Y.; KANTHARAJ, Y.; SHIVAPRASAD, M.; HEMANTH, K.P. Effect of vase chemicals at different concentration on longevity of Alstroemeria cut flower. International Journal of Advanced Biochemistry Research, v.SP-8, n.10, p.1421-1426. https://doi.org/10.33545/26174693.2024.v8.i10Sq.2736.
HASANUZZAMAN, M.; PARVIN, K.; BARDHAN, K.; NAHAR, K.; ANEE, T.I.; MASUD, A.A.C.; FOTOPOULOS, V. Biostimulants for the regulation of reactive oxygen species metabolism in plants under abiotic stress. Cells, v.10, n.10, p.2537, 2021. https://doi.org/10.3390/cells10102537.
IRIGOYEN, J.J.; EMERICH, D.W.; SANCHEZ-DIAZ, M. Water stress induced changes in concentration of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiologia Plantarum, v.84, p.55-60, 1992. https://doi.org/10.1111/j.1399-3054.1992.tb08764.x.
JEANDET, P.; FORMELA-LUBOIŃSKA, M.; LABUDDA, M.; MORKUNAS, I. The role of sugars in plant responses to stress and their regulatory function during development. International Journal of Molecular Science, v.23, n.9, p.5161, 2022. https://doi.org/10.3390/ijms23095161.
KISVARGA, S.; FARKAS, D.; BORONKAY, G.; NEMÉNYI, A.; ORLÓCI, L. Effects of biostimulants in horticulture, with emphasis on ornamental plant production. Agronomy, v. 12, p.1403, 2022. https://doi.org/10.3390/agronomy12051043.
KÖSSLER, S.; ARMAREGO-MARRIOTT, T.; TARKOWSKÁ, D.; TUREČKOVÁ, V.; AGRAWAL, S.; MI, J.; SOUZA, L.P.; SCHÖTTLER, M.A.; SCHADACH, A.; FRÖHLICH, A.; BOCK, R.; AL-BABILI, S.; RUF, S.; SAMPATHKUMAR, A.; MORENO, J.C. Lycopene β-cyclase expression influences plant physiology, development, and metabolism in tobacco plants. Journal of Experimental Botany, v.72, n.7, p.2544- 2569, 2021. https://doi.org/10.1093/jxb/erab029.
KUMAR, K.; DEBNATH, P.; SINGH, S.; KUMAR, N. An overview of plant phenolic and their involvement in abiotic stress tolerance. Stresses, v.3, p.570-585, 2023. https://doi.org/10.3390/stresses3030040.
LI, R.; HE, Y.; CHEN, J.; ZHENG, S.; ZHUANG, C. Research progress in improving photosynthetic efficiency. International Journal of Molecular Science, v.24, p.9286, 2023. https://doi.org/10.3390/ijms24119286.
LICHTENTHALER, H.K.; WELLBURN, A.R. Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. Biochemical Society Transactions, v.11, n.5, p.591- 592, 1987. https://doi.org/10.1042/bst0110591.
LIU, X.; YANG, J.; TAO, J.; YAO, R. Integrated application of inorganic fertilizer with fulvic acid for improving soil nutrient supply and nutrient use efficiency of winter wheat in a salt-affected soil. Applied Soil Ecology, v.170, p.104255, 2022. https://doi.org/10.1016/j.apsoil.2021.104255.
MANNINO, G.; GENTILE, C.; ERTANI, A.; SERIO, G.; BERTEA, C.M. Anthocyanins: biosynthesis, distribution, ecological role, and use of biostimulants to increase their content in plant foods - A Review. Agriculture, v.11, p.212, 2021. https://doi.org/10.3390/agriculture11030212.
MARINOVA, D.; RIBAROVA, F.; ATANASSOVA, M. Total phenolic and total flavonoids in Bulgarian fruits and vegetables. Journal of the University of Chemical Technology and Metallurgy, v.40, n.3, p.255- 260, 2005.
MAZZONI-PUTMAN, S.M.; BRUMOS, J.; ZHAO, C.; ALONSO, J.M.; STEPANOVA, AN. Auxin interactions with other hormones in plant development. Cold Spring Harbor Perspective in Biology, v.13, n.10, p.a039990, 2021. https://doi.org/10.1101/cshperspect.a039990.
MIRZAEE ESGANDIAN, N.; JABBARZADEH, Z.; RASOULI-SADAGHIANI, M.H. Investigation on some morphological and physiological characteristics of Gerbera jamesonii as affected by humic acid and nano-calcium chelate in hydroponic culture conditions. Journal of Ornamental Plants, v.10, n.1, p.1-13, 2020.
MOURA O.V.T.; BERBARA, R.L.L.; TORCHIA, D.F.O., SILVA, H.F.O.; CASTRO, T.A.V.; TAVARES, O.C.H.; RODRIGUES, N.F.; SANTOS, E.Z.L.A.; GARCIA, A.C. Humic foliar application as sustainable technology for improving the growth, yield, and abiotic stress protection of agricultural crops. A review. Journal of the Saudi Society of Agricultural Sciences, v.22, n.8, p.493-513, 2023. https://doi.org/10.1016/j.jssas.2023.05.001.
MUHAMMAD, I.; SHALMANI, A.; ALI, M.; YANG, Q.-H.; AHMAD, H.; LI, F.B. Mechanisms regulating the dynamics of photosynthesis under abiotic stresses. Frontiers in Plant Science, v.11, p.615942, 2021. https://doi.org/10.3389/fpls.2020.615942.
MUTUI, T.M.; EMONGOR, V.E.; HUTCHINSON, M.J. The effects of Gibberellin 4+7 on the vase life and flower quality of Alstroemeria cut flowers. Plant Growth Regulation, v.48, p. 207-214, 2006. https://doi.org/10.1007/s10725-006-0014-6.
NIKOOGOFTAR-SEDGHI, M.; RABIEI, V.; RAZAVI, F.; MOLAEI, S.; KHADIVI, A. Fulvic acid foliar application: a novel approach enhancing antioxidant capacity and nutritional quality of pistachio (Pistacia vera L.). BMC Plant Biology, v.24, n.1, p.241, 2024. https://doi.org/10.1186/s12870-024-04974-0.
RANJEETHA, R. Alstroemeria: an exotic cut flower. Krishi Science, v.5, n.3, p.80-83, 2024.
SADEGHI, S.; JABBARZADEH, Z. The effect of pre- and post-harvest sodium nitroprusside treatments on the physiological changes of cut Alstroemeria aurea ‘Orange Queen’ during vase life. BMC Plant Biology, v.24, p.678, 2024. https://doi.org/10.1186/s12870-024-05393-x.
SAHRAIE, F.; JABBARZADEH, Z.; AMIRI, J. Effect of fulvic acid on some morphological characteristics and leaf elements of Alstroemeria (Alstroemeria aurea ‘Orange Queen’). Flower and Ornamental Plants, v.9, n.1, p.17-30, 2024.
SAINI, R.K.; PRASAD, P.; LOKESH, V.; SHANG, X.; SHIN, J.; KEUM, Y.-S.; LEE, J.-H. Carotenoids: dietary sources, extraction, encapsulation, bioavailability, and health benefits - A review of recent advancements. Antioxidants, v.11, p.795, 2022. https://doi.org/10.3390/antiox11040795
SEYED HAJIZADEH, H.; BAYRAMI AGHDAM, S.; FAKHRGHAZI, H.; KARAKUS, S.; KAYA, O. Physico-chemical responses of Alstroemeria spp. cv. Rebecca to the presence of salicylic acid and sucrose in vase solution during postharvest life. BMC Plant Biology, v.24, n.121, 2024. https://doi.org/10.1186/s12870-024-04814-1.
SHARAYA, D.R.; NEHRA, A.; AGRAWALA, N., KHAN, N.A.; TUTEJA, N.; GILL, R.; GILL, S.S. Biostimulants in the alleviation of metal toxicity: an overview. Editor(s): Sarvajeet Singh Gill, Narendra Tuteja, Nafees A. Khan, Ritu Gill, In: Biostimulants and Protective Biochemical Agents, Biostimulants in Alleviation of Metal Toxicity in Plants, Academic Press, p.1-19, 2023. https://doi.org/10.1016/B978-0-323-99600-6.00017-7.
TURAN, M.; EKINCI, M.; KUL, R.; KOCAMAN, A.; ARGIN, S.; ZHIRKOVA, A.M.; PERMINOVA, I.V.; YILDIRIM, E. Foliar applications of humic substances together with Fe/Nano Fe to increase the iron content and growth parameters of spinach (Spinacia oleracea L.). Agronomy, v.12, p.2044, 2022. https://doi.org/10.3390/agronomy12092044.
WAGNER, G.J. Content and vacuole/ extra vacuole distribution of neutral sugars, free amino acids and anthocyanin in protoplasts. Plant Physiology, v.64, p.88-93, 1979. https://doi.org/10.1104/pp.64.1.88.
YAN, D.; WANG, J.; LU, Z.; LIU, R.; HONG, Y.; SU, B.; WANG, Y.; PENG, Z.; YU, C.; GAO, Y.; LIU, Z.; XU, Z.; DUAN, L.; LI, R. Melatonin-mediated enhancement of photosynthetic capacity and photoprotection improves salt tolerance in wheat. Plants, v. 12, p.3984, 2023. https://doi.org/10.3390/plants12233984.
YAO, L.; LIANG, D.; XIA, H.; PANG, Y.; XIAO, Q.; HUANG, Y.; ZHANG, W.; PU, C.; WANG, J.; LV, X. Biostimulants promote the accumulation of carbohydrates and biosynthesis of anthocyanins in ‘Yinhongli’ plum. Frontiers in Plant Science, v.13, p.1074965, 2023. https://doi.org/10.3389/fpls.2022.1074965.
YU, B.; WANG, L.; CUI, D.; GAO, W.; XUE, X.; NIE, P. Effects of fulvic acid on growth and nitrogen utilization efficiency in M9T337 seedlings. Plants, v.12, p.3937, 2023. https://doi.org/10.3390/plants12233937
ZULFIQAR, F.; MOOSA, A.; FERRANTE, A.; DARRAS, A.; SHETEIWY, M.S.; ALI, B.; ALTAF, M.A.; SOUFAN, W.; EL SABAGH, A. Borage leaf extract improves the vase life of cut gladiolus flowers by delaying the senescence process and reducing water stress. Postharvest Biology and Technology, v.210, p.112766, 2024. https://doi.org/10.1016/j.postharvbio.2024.112766.
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2025 Ornamental Horticulture

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.