Eficiência da aplicação foliar de fontes de cálcio em características morfológicas, estado nutricional e vida de vaso de duas cultivares de rosa
DOI:
https://doi.org/10.1590/2447-536X.v31.e312838Palavras-chave:
cálcio, crescimento, qualidade das flores, nutrientes minerais, Rosa hybridaResumo
O cálcio é fundamental para melhorar o crescimento e a qualidade de flores de corte. Apesar da disponibilidade de várias fontes de cálcio, a pesquisa sobre a identificação da fonte mais eficaz desse nutriente para as rosas é limitada. Este estudo teve como objetivo determinar a fonte ideal de cálcio para duas cultivares de rosa, ‘Samurai’ e ‘Jumilia’, investigando os efeitos das aplicações foliares de nitrato de cálcio (Ca(NO3)2), silicato de cálcio (Ca2O4Si) e quelato de cálcio com aminoácido e glicina (Ca(Glys)2), em comparação com um controle contendo água destilada. Os resultados demonstraram que o Ca(NO3)2 melhorou significativamente o comprimento do caule em ‘Jumilia’, enquanto o Ca2O4Si aumentou notavelmente o diâmetro do caule, a massa fresca e o número de flores. Além disso, o Ca(Glys)2 foi o mais eficaz em aumentar o conteúdo de carotenoides. Tanto o Ca2O4Si quanto o Ca(NO3)2 elevaram os níveis de clorofila a e b e clorofila total, melhorando assim as taxas fotossintéticas. Os resultados deste estudo indicam a eficácia do Ca(NO3)2 no fornecimento de cálcio para as pétalas, aumentando consequentemente o índice de estabilidade das membranas, retardando a murcha e estendendo a vida de vaso. Além disso, o Ca(Glys)2 foi eficaz no fornecimento de cálcio para as raízes e fósforo para as folhas. O Ca(NO3)2 também aumentou as concentrações de nitrogênio e cobre, enquanto o Ca2O4Si aumentou os conteúdos de potássio, ferro e manganês nas folhas. Os resultados indicam que o uso de Ca(NO3)2 através da pulverização foliar é especialmente benéfico para melhorar a qualidade e a vida de vaso das rosas de corte.
Downloads
Referências
AKHTAR, N.; ILYAS, N.; ARSHAD, M.; MERAJ, T.A.; HEFFT, D.I.; JAN, B.L.; AHMAD, P. The impact of calcium, potassium, and boron application on the growth and yield characteristics of durum wheat under drought conditions. Agronomy, v.12, n.8, p.1917, 2022. https://doi.org/10.3390/agronomy12081917
AL-IBRAHEEMI, R.A.; ALRUBYE, H.K.; MASHKOOR, S.A.; ALAUNAIBI, R.M. The effect of calcium on the growth and flowering of rose moss (Portulaca grandiflora L.) using hydroponic system. Natural Volatiles & Essential Oils, v.8, n.6, p.2531-2535, 2021.
AMKHA, S.; RUNGCHAROENTHONG, P. Effect of calcium silicate on number of trichomes, leaf thickness, and chlorophyll in tomato. AHC2020 1312, p.249-254, 2020. https://doi.org/10.17660/ActaHortic.2021.1312.36
AN, P.; LI, X.; ZHENG, Y.; ENEJI, A.E.; INANAGA, S. Calcium effects on root cell wall composition and ion contents in two soybean cultivars under salinity stress. Canadian Journal of Plant Science, v.94, n.4, p.733-740, 2014. https://doi.org/10.4141/cjps2013-291
BANIJAMALI, S.M.; FEIZIAN, M.; BAYAT, H.; MIRZAEI, S. Effects of nitrogen forms and calcium amounts on growth and elemental concentration in Rosa hybrida cv. ‘Vendentta’. Journal of Plant Nutrition, v.41, n.9, p.1205-1213, 2018. https://doi.org/10.1080/01904167.2018.1443127
BAR-TAL, A.; BAAS, R.; GANMORE-NEUMANN, R.; DIK, A.; MARISSEN, N.; SILBER, A.; DAVIDOV, S.; HAZAN, A.; KIRSHNER, B.; ELAD, Y. Rose flower production and quality as affected by Ca concentration in the petal. Agronomie, v.21, n.4, p.393-402, 2001. https://doi.org/10.1051/agro:2001132
BENNETT, K.; SCHNABEL, G.; FAUST, J.E. Evaluation of calcium sources for the management of Botrytis blight on petunia flowers. HortTechnology, v.33, p.262-267, 2023. https://doi.org/10.21273/HORTTECH05097-22
COUTINHO, P.W.R.; DE MORAES ECHER, M.; BRAGA, G.C.; GUIMARÃES, V.F.; DO CARMO LANA, M.; ALVES, T.N.; BRITO, T.S. Effect of pre-harvest calcium silicate on post-harvest quality of tomatoes. Research, Society and Development, v.9, n.11, e74791110148, 2020. https://doi.org/10.33448/rsd-v9i11.10148
DUAN, S.; ZHANG, C.; SONG, S.; MA, C.; ZHANG, C.; XU, W.; BONDADA, B.; WANG, L.; WANG, S. Understanding calcium functionality by examining growth characteristics and structural aspects in calcium-deficient grapevine. Scientific Reports, v.12, n.1, p.3233, 2022. https://doi.org/10.1038/s41598-022-06867-4
HAGHIGHI, M.; KHOSRAVI, S.; SEHAR, S.; SHAMSI, I.H. Foliar-sprayed calcium-tryptophan mediated improvement in physio- biochemical attributes and nutritional profile of salt-stressed Brassica oleracea var. italica. Scientia Horticulturae, v.307, p.111529, 2023. https://doi.org/10.1016/j.scienta.2022.111529
HUANG, J.; PENG, S. Influence of storage methods on total nitrogen analysis in rice leaves. Communications in Soil Science and Plant Analysis, v.35, n.5-6, p.879-888, 2004. https://doi.org/10.1081/CSS-120030364
ISMAIL, S.A.; FATHY, W.; GANZOUR, S.K. Impact of foliar application of calcium nitrate and chelated calcium in combination with boric acid on the vegetative growth, yield, quality components, and insect control of globe artichoke. Journal of Plant Production, v.13, n.9, p.743-752, 2022. https://dx.doi.org/10.21608/jpp.2022.159772.1165
JIANG, A.; ZUO, J.; ZHENG, Q.; GUO, L.; GAO, L.; ZHAO, S.; WANG, Q.; HU, W. Red LED irradiation maintains the postharvest quality of broccoli by elevating antioxidant enzyme activity and reducing the expression of senescence-related genes. Scientia Horticulturae, v.251, p.73-79, 2019. https://doi.org/10.1016/j.scienta.2019.03.016
KHALILI, Z.; NEKOUNAM, F.; BARZEGAR, T.; GHAHREMANI, Z.; FARHANGPOUR, M. The effect of foliar application of calcium chloride, ascorbic acid and harvest time on fruit quality of tomato (Solanum lycopersicum cv. SV8320TD). Journal of Horticultural Science, v.32, p.61-74, 2023. https://doi.org/10.22067/jhs.2023.82265.1265
LICHTENTHALER, H.K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology, v.148, p.350- 382, 1987. https://doi.org/10.1016/0076-6879(87)48036-1
MAHAJAN, M.; PAL, P.K. Flower yield and chemical composition of essential oil from Rosa damascena under foliar application of Ca (NO3)2 and seasonal variation. Acta Physiologiae Plantarum, v.42, n.2, p.23, 2020. https://doi.org/10.1007/s11738-019-2996-5
MOHAMMED, R.A.J.; ABOOD, B.M.A. Effect of bacterial inoculum, spraying with calcium nitrate and salicylic acid on vegetative and flowering growth traits of Gerbera jamesonii. Plant Archives, v.20, n.1, p.633-638, 2020.
NAEEM, M.; NAEEM, M.S.; AHMAD, R.; IHSAN, M.Z,; ASHRAF, M.Y.; HUSSAIN, Y.; FAHAD, S. Foliar calcium spray confers drought stress tolerance in maize via modulation of plant growth, water relations, proline content, and hydrogen peroxide activity. Archives of Agronomy and Soil Science, v.64, n.1, p.116-131, 2018. https://doi.org/10.1080/03650340.2017.1327713
PALTA, J.P. Role of calcium in plant responses to stresses: linking basic research to the solution of practical problems. HortScience, v.31, p.51- 57, 1996.
QIAN, X.; LIU, L.; CROFT, H.; CHEN, J. Relationship between leaf maximum carboxylation rate and chlorophyll content preserved across 13 species. Journal of Geophysical Research: Biogeosciences, v.126, n.2, e2020JG006076, 2021. https://doi.org/10.1029/2020JG006076
ROOSTA, H.; NILI, F.; POURKHALOEE, A.; ASKARI, N. Effects of supplemental light quality and foliar application with calcium on photosynthetic parameters and flower stem strength of cut gerbera (Gerbera jamesonii ‘Bayadere’). International Journal of Horticultural Science and Technology, v.11, n.1, p.69-82, 2024. https://doi.org/10.22059/ijhst.2023.356795.625
DUAN, S.; ZHANG, C.; SONG, S.; MA, C.; ZHANG, C.; XU, W.; BONDADA, B.; WANG, L.; WANG, S. Understanding calcium functionality by examining growth characteristics and structural aspects in calcium-deficient grapevine. Scientific Reports, v.12, n.1, p.3233, 2022. https://doi.org/10.1038/s41598-022-06867-4
HAGHIGHI, M.; KHOSRAVI, S.; SEHAR, S.; SHAMSI, I.H. Foliar-sprayed calcium-tryptophan mediated improvement in physio- biochemical attributes and nutritional profile of salt-stressed Brassica oleracea var. italica. Scientia Horticulturae, v.307, p.111529, 2023. https://doi.org/10.1016/j.scienta.2022.111529
HUANG, J.; PENG, S. Influence of storage methods on total nitrogen analysis in rice leaves. Communications in Soil Science and Plant Analysis, v.35, n.5-6, p.879-888, 2004. https://doi.org/10.1081/CSS-120030364
ISMAIL, S.A.; FATHY, W.; GANZOUR, S.K. Impact of foliar application of calcium nitrate and chelated calcium in combination with boric acid on the vegetative growth, yield, quality components, and insect control of globe artichoke. Journal of Plant Production, v.13, n.9, p.743-752, 2022. https://dx.doi.org/10.21608/jpp.2022.159772.1165
JIANG, A.; ZUO, J.; ZHENG, Q.; GUO, L.; GAO, L.; ZHAO, S.; WANG, Q.; HU, W. Red LED irradiation maintains the postharvest quality of broccoli by elevating antioxidant enzyme activity and reducing the expression of senescence-related genes. Scientia Horticulturae, v.251, p.73-79, 2019. https://doi.org/10.1016/j.scienta.2019.03.016
KHALILI, Z.; NEKOUNAM, F.; BARZEGAR, T.; GHAHREMANI, Z.; FARHANGPOUR, M. The effect of foliar application of calcium chloride, ascorbic acid and harvest time on fruit quality of tomato (Solanum lycopersicum cv. SV8320TD). Journal of Horticultural Science, v.32, p.61-74, 2023. https://doi.org/10.22067/jhs.2023.82265.1265
LICHTENTHALER, H.K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology, v.148, p.350- 382, 1987. https://doi.org/10.1016/0076-6879(87)48036-1
MAHAJAN, M.; PAL, P.K. Flower yield and chemical composition of essential oil from Rosa damascena under foliar application of Ca (NO3)2 and seasonal variation. Acta Physiologiae Plantarum, v.42, n.2, p.23, 2020. https://doi.org/10.1007/s11738-019-2996-5
MOHAMMED, R.A.J.; ABOOD, B.M.A. Effect of bacterial inoculum, spraying with calcium nitrate and salicylic acid on vegetative and flowering growth traits of Gerbera jamesonii. Plant Archives, v.20, n.1, p.633-638, 2020.
NAEEM, M.; NAEEM, M.S.; AHMAD, R.; IHSAN, M.Z,; ASHRAF, M.Y.; HUSSAIN, Y.; FAHAD, S. Foliar calcium spray confers drought stress tolerance in maize via modulation of plant growth, water relations, proline content, and hydrogen peroxide activity. Archives of Agronomy and Soil Science, v.64, n.1, p.116-131, 2018. https://doi.org/10.1080/03650340.2017.1327713
PALTA, J.P. Role of calcium in plant responses to stresses: linking basic research to the solution of practical problems. HortScience, v.31, p.51- 57, 1996.
QIAN, X.; LIU, L.; CROFT, H.; CHEN, J. Relationship between leaf maximum carboxylation rate and chlorophyll content preserved across 13 species. Journal of Geophysical Research: Biogeosciences, v.126, n.2, e2020JG006076, 2021. https://doi.org/10.1029/2020JG006076
ROOSTA, H.; NILI, F.; POURKHALOEE, A.; ASKARI, N. Effects of supplemental light quality and foliar application with calcium on photosynthetic parameters and flower stem strength of cut gerbera (Gerbera jamesonii ‘Bayadere’). International Journal of Horticultural Science and Technology, v.11, n.1, p.69-82, 2024. https://doi.org/10.22059/ijhst.2023.356795.625
SOURI, M.K. Aminochelate fertilizers: the new approach to the old problem; a review. Open Agriculture, v.1, n.1, p.118-123, 2016. https://doi.org/10.1515/opag-2016-0016
TORRE, S.; BOROCHOV, A.; HALEVY, A.H. Calcium regulation of senescence in rose petals. Physiologia Plantarum, v.107, n.2, p.214-219, 1999. https://doi.org/10.1034/j.1399-3054.1999.100209.x
WANG, G.; WANG, J.; HAN, X.; CHEN, R.; XUE, X. Effects of spraying calcium fertilizer on photosynthesis, mineral content, sugar–acid metabolism, and fruit quality of Fuji apples. Agronomy, v.12, p.2563, 2022. https://doi.org/10.3390/agronomy12102563
WEI, L.; WANG, C.; LIAO, W. Hydrogen sulfide improves the vase life and quality of cut roses and chrysanthemums. Journal of Plant Growth Regulation, v.32, p.1-16, 2021. https://doi.org/10.1007/s00344-021-10312-7
WENG, X.; LI, H.; REN, C.; ZHOU, Y.; ZHU, W.; ZHANG, S.; LIU, L. Calcium regulates growth and nutrient absorption in poplar seedlings. Frontiers in Plant Science, v.13, 887098, 2022. https://doi.org/10.3389/fpls.2022.887098
ZHANG, Z.; WU, P.; ZHANG, W.; YANG, Z.; LIU, H.; AHAMMED, G.J.; CUI, J. Calcium is involved in exogenous NO-induced enhancement of photosynthesis in cucumber (Cucumis sativus L.) seedlings under low temperature. Scientia Horticulturae, v.261, p.108953, 2020. https://doi.org/10.1016/j.scienta.2019.108953
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2025 Ornamental Horticulture

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.