Os tratamentos com água quente realizados na base do caule floral reduzem a senescência pós-colheita do lírio de corte

Autores

DOI:

https://doi.org/10.1590/2447-536X.v31.e312854

Palavras-chave:

antocianina, choque térmico, Lilium longiflorum, tépalas, vida útil em vaso

Resumo

Os lírios são comumente cultivados para serem comercializados como flores de corte. A colheita causa um estresse considerável, que, por sua vez, desencadeia a senescência acelerada, sendo este processo um fator limitante da vida pós-colheita. O controle da senescência é alcançado por meio de várias metodologias, incluindo tratamentos térmicos em temperaturas moderadas por um curto período de tempo. Esses tratamentos geram um estresse leve que pode afetar o metabolismo dos tecidos. O objetivo deste estudo foi determinar a qualidade, a vida pós-colheita e o metabolismo de Lilium longiflorum após a aplicação de estresse térmico na base dos caules das flores. Os tratamentos foram realizados durante 5 minutos a 50 °C com água nos primeiros 2 cm da área de corte, enquanto um tratamento semelhante foi realizado com água a 20 °C para o controle. Os caules tratados apresentaram menor perda de peso, menor consumo de água e os botões abriram mais tarde. Da mesma forma, foi observada menor senescência e menor perda de clorofila nas folhas das amostras tratadas. Uma tendência a uma maior concentração de fenóis foi observada nos primeiros dias de armazenamento nas folhas e tépalas dos caules tratados, enquanto não foram detectadas variações significativas no teor de flavonoides. Menores quantidades de TBARS e menor perda de eletrólitos foram detectadas nas amostras tratadas com calor, indicando menor peroxidação e maior estabilidade da membrana. O tratamento também induziu maior acúmulo de antocianinas nas tépalas. Os resultados sugerem que o tratamento térmico com água quente no pós- colheita é um método adequado para melhorar a qualidade das hastes, o grau de abertura dos botões e atrasar a senescência, prolongando a vida em vaso sem efeitos negativos durante o armazenamento.

Downloads

Não há dados estatísticos.

Biografia do Autor

Gunther Alfredo Mantilla, Instituto Nacional de Tecnología Agropecuaria

Instituto Nacional de Tecnología Agropecuaria, Instituto de Floricultura, Hurlingham-BA, Argentina.

Libertad Mascarini, Instituto Nacional de Tecnología Agropecuaria

Instituto Nacional de Tecnología Agropecuaria, Instituto de Floricultura, Hurlingham-BA, Argentina.

Hugo Daniel Chludil, Universidad de Buenos Aires

Facultad de Agronomía, Departamento de Producción Vegetal, Cátedra de Floricultura, Buenos Aires-BA, Argentina.

Gustavo Adolfo Martínez, Universidad Nacional de La Plata

Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Fisiología Vegetal, La Plata-BA, Argentina.

Referências

AL FAYAD, A.; OTHMAN, Y. Pre-Harvest chemical compounds influence Lily (Lilium × elegans) leaf and flower indigenous phenols, flavonoids and gibberellic acid levels. International Journal of Plant Biology, v.15, p.551–560, 2024. https://doi.org/10.3390/ijpb15030042

AL-AJLOUNI, M.A.; OTHMAN, Y.A.; A’SAF, T.A.; AYAD, J.Y. Lilium morphology, physiology, anatomy and postharvest flower quality in response to plant growth regulators. South African Journal of Botany, v.156, p.43-53, 2023. https://doi.org/10.1016/j.sajb.2023.03.004

ALINIAEIFARD, S.; FALAHI, Z.; DIANATI DAYLAMI, S.; LI, T.; WOLTERING, E. Postharvest spectral light composition affects chilling injury in anthurium cut flowers. Frontiers in Plant Science, v.11, p.846, 2023. 10.3389/fpls.2020.00846

ALLEN, R.G.; SMITH, M.; PEREIRA, L.S.; RAES, D.; WRIGHT, J.L. Revised FAO Procedures for calculating evapotranspiration: irrigation and drainage paper No. 56 with testing in Idaho. Watershed Management and Operations Management, v.56, p.1-10, 2000. https://doi.org/10.1061/40499(2000)125

ARROM, L.; MUNNÉ-BOSCH, S. Hormonal changes during flower development in floral tissues of Lilium. Planta, v.236, p.343-354, 2012. https://doi: 10.1007/s00425-012-1615-0.

BARRIGA LOURENCO, A.; CASAJÚS, V.; RAMOS, R.; MASSOLO, F.; SALINAS, C.; CIVELLO, P.; MARTÍNEZ, G. Postharvest shelf life extension of minimally processed kale at ambient and refrigerated storage by use of modified atmosphere. Food Science and Technology International, v.30, p.713-721, 2023. https://doi.org/10.1177/10820132231195379

CHANTRACHIT, T.; PAULL, R.E. effect of hot water on red ginger (Alpinia purpurata) inflorescence vase life. Postharvest Biology and Technology, v.14, n.1, p.77-86, 1998. https://doi.org/10.1016/s0925-5214(98)00033-7

COSTA, L.C.; DE ARAUJO, F.F.; RIBEIRO, W.S.; DE SOUSA SANTOS, M.N.; FINGER, F.L. Postharvest physiology of cut flowers. Ornamental Horticulture, v.27, p.374-385, 2021. https://doi.org/10.1590/2447-536X.v27i3.2372

FERRANTE, A. Ethylene and horticultural crops. In: KHAN, N.; FERRANTE, A.; MUNNÉ-BOSCH, S. (eds). The Plant Hormone Ethylene. New York: Academic Press, 2023. p.107-121.

GIUSTI M.; WROLSTAD R. Characterization and measurement of anthocyanins by UV visible spectroscopy. Current Protocols in Food Analytical Chemistry, 00(1), F1.2.1–F1.2.13, 2001. http://dx.doi.org/10.1002/0471142913.faf0102s00

HAJAM, Y.A.; LONE, R.; KUMAR, R. Role of plant phenolics against reactive oxygen species (ROS) induced oxidative stress and iochemical alterations. In: Lone, R.; Khan, S.; Al-Sadi, M. (Eds). Plant Phenolics in Abiotic Stress Management. Berlin: Springer Nature, 2023. p.125-147.

KATO, M.; KAMO, T.; WANG, R.; NISHIKAWA, F.; HYODO, H.; IKOMA, Y., SUGIURA, M.; YANO, M. Wound-induced ethylene synthesis in stem tissue of harvested broccoli and its effect on senescence and ethylene synthesis in broccoli florets. Postharvest Biology and Technology, v.24, p.69-78, 2002. https://doi.org/10.1016/S0925-5214(01)00111-9

LU, N.; WU, L.; SHI, M. Selenium enhances the vase life of Lilium longiflorum cut flower by regulating postharvest physiological characteristics. Scientia Horticulturae, v.264, p.109172, 2020. https://doi.org/10.1016/j.scienta.2019.109172

MALAKAR, M.; DE OLIVERA PAIVA, P.D.; BERUTO, M.; DA CUNHA NETO, A.R. Review of recent advances in post-harvest techniques for tropical cut flowers and future prospects: Heliconia as a case-study. Frontiers in Plant Science, v.14, p.462, 2023. https://doi.org/10.3389/fpls.2023.1221346

MANTILLA, G.; LORENZO, G.; MASCARINI, L. Hormonal endogenous changes in response to the exogenous 6-benzylaminopurine application in pre-and post-harvesting lilium flower stalks. Ornamental Horticulture, v.27, n.3, p.357-364, 2021. https://doi.org/10.1590/2447-536X.v27i3.2337

MUHAMMAD, N.; LUO, Z.; YANG, M.; LI, X.; LIU, Z.; LIU, M. The joint role of the late anthocyanin biosynthetic UFGT-encoding genes in the flowers and fruits coloration of horticultural plants. Scientia Horticulturae, v.301, p.111110, 2022. https://doi.org/10.1016/j.scienta.2022.111110

PAGE, T.; GRIFFITHS, G.; BUCHANAN-WOLLASTON, V. Molecular and biochemical characterization of postharvest senescence in broccoli. Plant Physiology, v.125, p.718-727, 2001. https://doi.org/10.1104/pp.125.2.718

PATTYN, J.; VAUGHAN HIRSCH, J.; POEL, B.V.D. The regulation of ethylene biosynthesis: a complex multilevel control circuitry. New Phytologist, v.229, p.770-782, 2020. https://doi.org/10.1111/nph.16873

PERINI, M.A.; SIN, I.N.; REYES JARA, A.M.; GÓMEZ LOBATO, M.E.; CIVELLO, P.M.; MARTÍNEZ, G.A. Hot water treatments performed in the base of the broccoli stem reduce postharvest senescence of broccoli (Brassica oleracea L. var Italica) heads stored at 20 Co. LWT, v.77, p.314–322, 2017. https://doi.org/10.1016/j.lwt.2016.11.066

ROGERS, H.; MUNNÉ-BOSCH, S. Production and scavenging of reactive oxygen species and redox signaling during leaf and flower senescence: similar but different. Plant Physiology, v.171, p.1560-1568, 2016. https://doi.org/10.1104/pp.16.00163

SEATON, K.; JOYCE, D. Effects of low temperature and elevated CO2 treatments and of heat treatments for insect disinfestation on some native Australian cut flowers. Scientia Horticulturae, v.56, p.119-133, 1993. https://doi.org/10.1016/0304-4238(93)90013-G

SINGH, A.; KUMAR, J.; KUMAR, P. Effects of plant growth regulators and sucrose on post harvest physiology, membrane stability and vase life of cut spikes of gladiolus. Plant Growth Regulation, v.55, p.221-229, 2008. https://doi.org/10.1007/s10725-008-9278-3

ŠOLA, I.; DAVOSIR, D.; KOKIĆ, E.; ZEKIROVSKI, J. Effect of hot-and cold-water treatment on broccoli bioactive compounds, oxidative stress parameters and biological effects of their extracts. Plants, v.12, p.1135, 2023. https://doi.org/10.3390/plants12051135

SUN J.; GUO H.; TAO J. Effects of harvest stage, storage, and preservation technology on postharvest ornamental value of cut peony (Paeonia lactiflora) flowers. Agronomy, v.12, p.230, 2022. https://doi.org/10.3390/agronomy12020230

SUN, X.; QIN, M.; YU, Q.; HUANG, Z.; XIAO, Y.; LI, Y.; MA, N.; GAO,J. Molecular understanding of postharvest flower opening and senescence. Molecular Horticulture, v.1, p.7, 2021. https://doi.org/10.1186/s43897-021-00015-8

VAN DOORN, W.G.; HAN, S. Postharvest quality of cut lily flowers. Postharvest Biology and Technology, v.62, p.16, 2011. https://doi.org/10.1016/j.postharvbio.2011.04.013

WANG, Y.; ZHAO, H.; LIU, C.; CUI, G.; QU, L.; BAO, M.; WANG, J.; CHAN, Z.; WANG, Y. Integrating physiological and metabolites analysis to identify ethylene involvement in petal senescence in Tulipa gesneriana. Plant Physiology and Biochemistry, v.149, p.121-31, 2020. http://dx.doi.org/10.1016/j.plaphy.2020.02.001

WU, X.; ZHANG, H.; LIU, X.; LIU, Z.; WANG, C.; LIAO, W. Molecular hydrogen prolongs Lanzhou lily (Lilium davidii var. Unicolor) postharvest shelf-life via improving antioxidant capacity. Scientia Horticulturae, v.336, p.113431, 2024. https://doi.org/10.1016/j.scienta.2024.113431

ZAGOSKINA, N.V.; ZUBOVA, M.Y.; NECHAEVA, T.L.; KAZANTSEVA, V.V.; GONCHARUK, E.A.; KATANSKAYA, V.M.; BARANOVA, E.N.; AKSENOVA, M.A. Polyphenols in plants: structure, biosynthesis, abiotic stress regulation, and practical applications (Review). International Journal of Molecular Science, v.24, p.13874, 2023. https://doi.org/10.3390/ijms241813874

ZHANG, L.; YAN, L.; ZHANG, C.; KONG, X.; ZHENG, X.; DONG, L. Glucose supply induces psmyb2-mediated anthocyanin accumulation in Paeonia suffruticosa ‘Tai Yang’ cut flower. Frontiers in Plant Science, v.13, p.874526, 2022. https://doi.org/10.3389/fpls.2022.874526

ZHANG, Y.; GUO, P. XIA, X.; GUO, H.; LI, Z. Multiple layers of regulation on leaf senescence: new advances and perspectives. Frontiers in Plant Science, v.12, p.788996, 2021. https://doi.org/10.3389/fpls.2021.788996

ZHAO W.; ZHAO H.; WANG H.; HE Y. Research progress on the relationship between leaf senescence and quality, yield and stress resistance in horticultural plants. Frontiers in Plant Science, v.13, p.1044500, 2022. https://doi.org/10.3389/fpls.2022.1044500

Downloads

Publicado

2025-05-02

Edição

Seção

Artigos