Nanoparticulas de prata eliminam hiperhidricidade em Lavada micropropagada

Autores

DOI:

https://doi.org/10.1590/2447-536X.v29i3.2565

Palavras-chave:

AgNPs, cultura de tecidos, Lavandula angustifolia Mill., vitrificação

Resumo

É um grande desafio o cultivo de alfazema fora das condições adequadas. Essa planta, de grande importância econômica, requer condições ótimas para germinar e produzir rendimentos elevados. Sendo o uso da técnica de cultura de tecidos vegetais uma possi- bilidade de melhorar a qualidade da planta. No entanto, um dos principais problemas da micropropagação da lavanda é a ocorrência de hiperhidricidade (HH) devido à presença da citocinina (CK) durante o processo de cultivo in vitro. Dessa forma, objetivou-se realizar um estudo para determinar soluções para a HH em plântulas de lavanda micropropagadas. Diferentes concentrações de na- nopartículas de prata (AgNPs) associados a 1,0 mg de L-1 de 6-benzilaminopurina (BA) foram aplicadas e avaliou-se o desempenho da HH, o crescimento e o desenvolvimento, bem como o teor de fenólicos totais (TPC) e flavonóides totais (TFC). A aplicação de 20 mg L-1 de AgNPs foi considerada a concentração ideal para interromper a ocorrência de HH. Embora a proliferação de brotos tenha sido inferior àquela observada em plantas cultivadas em meio suplementado com BA, a adição dessa concentração de AgNPs melhorou a qualidade dos brotos e das raízes. Acredita-se que o aumento de metabólitos secundários e da atividade antioxidante possa ter contribuído para a resolução da HH.

Downloads

Não há dados estatísticos.

Referências

ASSAAD, H.; ZHOU, L.; CARROLL, R.; WU, G. Rapid Publication-Ready MS-Word Tables for One-Way ANOVA. Springer Plus, v.3, n.1, p.1-8, 2014. https://doi.org/10.1186/2193-1801-3-474

BATOOL, S.U.; JAVED, B.; ZEHRA, S.S.; MASHWANI, Z.U.R.; RAJA, N.I.; KHAN, T.; ALHAITHLOUL, H.A.S.; ALGHANEM, S.M.; AL-MUSHHIN, A.A.; HASHEM, L. Exogenous applications of bio-fabricated silver nanoparticles to improve biochemical, antioxidant, fatty acid and secondary metabolite contents of sunflower. Nanomaterials, v.11, n.7, 1750, 2021. https://doi.org/10.3390/nano11071750

CASER, M.; DEMASI, S.; MOZZANINI, E.; CHIAVAZZA, P.; SCARIOT, V. Germination Performances of 14 Wildflowers screened for shaping urban landscapes in mountain areas. Sustainability, v.14, n.5, p.2641, 2022. https://doi.org/10.3390/su14052641

CHAIYANA, W.; PUNYOYAI, C.; SOMWONGIN, S.; LEELAPORNPISID, P.; INGKANINAN, K.; WARANUCH, N.; MUELLER, M. Inhibition of 5α-reductase, IL-6 secretion, and oxidation process of Equisetum debile Roxb. ex vaucher extract as functional food and nutraceuticals ingredients. Nutrients, v.9, n.10, p.1105, 2017. https://doi.org/10.3390/nu9101105

DO, Q.D.; ANGKAWIJAYA, A.E.; TRAN-NGUYEN, P.L.; HUYNH, L.H.; SOETAREDJO, F.E.; ISMADJI, S.; JU, Y.H. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. Journal of Food and Drug Analysis, v.22, n.3, p.296-302, 2014. https://doi.org/10.1016/j.jfda.2013.11.001

FOO, P.C.; LEE, Z.H.; CHIN, C.K.; SUBRAMANIAM, S.; CHEW, B.L. Shoot induction in white eggplant (Solanum melongena L. cv. Bulat Putih) using 6-benzylaminopurine and kinetin. Tropical life Sciences Research, v.29, n.2, p.119-129, 2018. https://doi.org/10.21315/tlsr2018.29.2.9

GAO, H.; XIA, X.; AN, L. Critical roles of the activation of ethylene pathway genes mediated by DNA demethylation in Arabidopsis hyperhydricity. The Plant Genome, v.15, n.2, e20202, 2022. https://doi.org/10.1002/tpg2.20202

GUPTA, S.D.; AGARWAL, A.; PRADHAN, S. Phytostimulatory effect of silver nanoparticles (AgNPs) on rice seedling growth: An insight from antioxidative enzyme activities and gene expression patterns. Ecotoxicology and Environmental Safety, v.161, p.624-633, 2018. https://doi.org/10.1016/j.ecoenv.2018.06.023

GUZMÁN-BÁEZ, G.A.; TREJO-TÉLLEZ, L.I.; RAMÍREZ- OLVERA, S.M.; SALINAS-RUÍZ, J.; BELLO-BELLO, J.J.; ALCÁNTAR-GONZÁLEZ, G.; HIDALGO-CONTRERAS, J.V.; GÓMEZ-MERINO, F.C. Silver nanoparticles increase nitrogen, phosphorus, and potassium concentrations in leaves and stimulate root length and number of roots in tomato seedlings in a hormetic manner. Dose-Response, v.19, n.4, 2021. https://doi.org/10.1177/15593258211044576

IVANOVA, M.; VAN STADEN, J. Influence of gelling agent and cytokinins on the control of hyperhydricity in Aloe polyphylla. Plant Cell, Tissue and Organ Culture, v.104, n.1, p.13-21, 2011.

JADCZAK, P.; KULPA, D.; BIHUN, M.; PRZEWODOWSKI, W. Positive effect of AgNPs and AuNPs in in vitro cultures of Lavandula angustifolia Mill. Plant Cell, Tissue and Organ Culture. v.139, n.1, p.191- 197, 2019. https://doi.org/10.1007/s11240-019-01656-w

JADCZAK, P.; KULPA, D.; DROZD, R.; PRZEWODOWSKI, W.; PRZEWODOWSKA, A. Effect of AuNPs and AgNPs on the antioxidant system and antioxidant activity of lavender (Lavandula angustifolia Mill.) from in vitro cultures. Molecules, v.25, n.23, 5511, 2020. https://doi.org/10.3390/molecules25235511

JAN, T.; GUL, S.; KHAN, A.; PERVEZ, S.; NOOR, A.; AMIN, H.; BIBI, S.; NAWAZ, M.; RAHIM, A.; AHMAD, M. Range of factors in the reduction of hyperhydricity associated with in vitro shoots of Salvia santolinifolia Bioss. Brazilian Journal of Biology, v.83, 2021. https://doi.org/10.1590/1519-6984.246904

KAVEH, R.; LI, Y.S.; RANJBAR, S.; TEHRANI, R.; BRUECK, C.L.; VAN AKEN, B. Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environmental Science & Technology, v.47, n.18, p.10637-10644, 2013. https://doi.org/10.1021/ es402209w

KEMAT, N.; VISSER, R.G.; KRENS, F.A. Hypolignification: A decisive factor in the development of hyperhydricity. Plants, v.10, n.12, 2625, 2021. https://doi.org/10.3390/plants10122625

KOEFENDER, J.; MANFIO, C.E.; CAMERA, J.N.; SCHOFFEL, A.; GOLLE, D.P. Micropropagation of lavender: a protocol for production of plantlets. Horticultura Brasileira, v.39, p.404-410, 2021. https://doi.org/10.1590/s0102-0536-20210409

KUREPA, J.; SHULL, T.E.; SMALLE, J.A. Antagonistic activity of auxin and cytokinin in shoot and root organs. Plant Direct, v.3, n.2, e00121, 2019. https://doi.org/10.1002/pld3.121

LI, N.Y.; TANG, H.R.; GE, C.; MO, F.; XIAO, Y.H.; LUO, Y. Tissue culture of Lavandula angustifolia L. AIP Conference Proceedings, v.2079, n.1, p.020014, 2019. https://doi.org/10.1063/1.5092392

LICHTENTHALER, H.K.; BUSCHMANN, C. Chlorophylls and carotenoids: Measurement and characterization by UVVIS spectroscopy. Current Protocols in Food Analytical Chemistry, v.1, n.1, p.F4-3, 2001. https://doi.org/10.1002/0471142913.faf0403s01

MACHADO, M.P.; SILVA, A.L.L. D.; BIASI, L.A.; DESCHAMPS, C.; BESPALHOK FILHO, J.C.; ZANETTE, F. Influence of calcium content of tissue on hyperhydricity and shoot-tip necrosis of in vitro regenerated shoots of Lavandula angustifolia Mill. Brazilian Archives of Biology and Technology, v.57, p.636-643, 2014. https://fvdoi.org/10.1590/S1516-8913201402165

NIKAM, T.D.; MULYE, K.V.; CHAMBHARE, M.R.;NIKULE, H.A.; AHIRE, M.L. Reduction in hyperhydricity and improvement in in vitro propagation of commercial hard fibre and medicinal glycoside yielding Agave sisalana Perr. ex Engelm by NaCl and polyethylene glycol. Plant Cell, Tissue and Organ Culture, v.138, n.1, p.67-78, 2019. https://doi.org/10.1007/s11240-019-01603-9

PENCE, V.C.; FINKE, L.R.; NIEDZ, R.P. Evaluating a DOE screen to reduce hyperhydricity in the threatened plant, Cycladenia humilis var. Jonesii. In Vitro Cellular & Developmental Biology-Plant, v.56, n.2, p.215-229, 2020. https://doi.org/10.1007/s11627-019-10038-y

PETRUŞ-VANCEA, A. Cell ultrastructure and chlorophyll pigments in hyperhydric and non-hyperhydric Beta vulgaris var. Conditiva plantlets, treated with deuterium depleted water. Plant Cell, Tissue and Organ Culture, v.135, n.1, p.13-21, 2018. https://doi.org/10.1007/s11240-018-1439-0

RANI, R.; SHARMA, S. Recent advances in medicinal applications of essential oil. Materials Today: Proceedings, 2022. https://doi.org/10.1016/j.matpr.2022.06.438

SALEM, J. Effects of anti-ethylene compounds on vitrification and genome fidelity of Stevia rebaudiana Bertoni. Egyptian Journal of Botany, v.60, n.2, p.519- 535, 2020. https://doi.org/10.21608/ejbo.2020.19706.1392

SEHNAL, K.; ÖZDOĞAN, Y.; STANKOVA, M.; TOTHOVA, Z.; UHLIROVA, D.; VSETICKOVA, M.; KIZEK, R.; HOSNEDLOVA, B.; KEPINSKA, M.; RUTTKAY-NEDECKY, B. Effect of silver nanoparticles (AgNPs) prepared by green synthesis from sage leaves (Salvia officinalis) on maize chlorophyll content. NANOCON Conference Proceedings, p.457-462, 2020. https://doi.org/10.37904/nanocon.2019.8521

SHARMA, L.; CHANDRA, M.; PUNEETA, A. Health benefits of lavender (Lavandula angustifolia). International Journal of Physiology, Nutrition and Physical Education, v.4, n.1, p.1274-1277, 2020.

SILVA, J.A.; NEZAMI-ALANAGH, E.; BARREAL, M.E.; KHER, M.M.; WICAKSONO, A.; GULYÁS, A.; HIDVÉGI, N.; MAGYAR-TÁBORI, K.; MENDLER-DRIENYOVSZKI, N.; MÁRTON, L. Shoot tip necrosis of in vitro plant cultures: a reappraisal of possible causes and solutions. Planta, v.252, n.3, p.1-35, 2020. https://doi.org/10.1007/s00425-020-03449-4

SREELEKSHMI, R.; SIRIL, E.; MUTHUKRISHNAN, S. Role of biogenic silver nanoparticles on hyperhydricity reversion in Dianthus chinensis L. an in vitro model culture. Journal of Plant Growth Regulation, v.41, n.1, p.23-39, 2022. https://doi.org/10.1007/s00344-020-10276-0

SULTANA, T.; JAVED, B.; RAJA, N.I. Silver nanoparticles elicited physiological, biochemical, and antioxidant modifications in rice plants to control Aspergillus flavus. Green Processing and Synthesis, v.10, n.1, p.314-324, 2021. https://doi.org/10.1515/gps-2021-0034

SZEKELY-VARGA, Z.; KENTELKY, E.; CANTOR, M. Effect of gibberellic acid on the seed germination of Lavandula angustifolia Mill. Romanian. Journal of Horticulture, v.2, p.169-176, 2021. https://doi.org/10.51258/RJH.2021.22

TASCAN, A.; ADELBERG, J.; TASCAN, M.; RIMANDO, A.; JOSHEE, N.; YADAV, A. K. Hyperhydricity and flavonoid content of Scutellaria species in vitro on polyester-supported liquid culture systems. HortScience, v.45, v.11, p.1723-1728, 2010. https://doi.org/10.21273/ HORTSCI.45.11.1723

TORRENT, L.; IGLESIAS, M.; MARGUÍ, E.; HIDALGO, M.; VERDAGUER, D.; LLORENS, L.; KODRE, A.; KAVČIČ, A.; VOGEL-MIKUŠ, K. Uptake, translocation and ligand of silver in Lactuca sativa exposed to silver nanoparticles of different size, coatings and concentration. Journal of Hazardous Materials, v.384, 2020. https://doi.org/10.1016/j.jhazmat.2019.121201

TRIPATHI, D.; PANDEY-RAI, S. Impacts of green synthesized silver nanoparticles with natural bioactive compounds on plant’s developmental behavior. Natural Bioactive Compounds, p.435-452, 2021. https://doi.org/10.1016/B978-0-12-820655-3.00022-7

TUNG, H.T.; NGUYEN, P.L.H.; VAN LICH, T.; NGAN, H.T.M.; LUAN, V.Q.; KHAI, H.D.; MAI, N.T.N.; VINH, B.V.T.; NHUT, D.T. Enhanced shoot and plantlet quality of Gerbera (Gerbera jamesonii Revolution Yellow) cultivar on medium containing silver and cobalt nanoparticles. Scientia Horticulturae, v.306, 111445, 2022. https://doi.org/10.1016/j.scienta.2022.111445

TYMOSZUK, A.; KULUS, D. Silver nanoparticles induce genetic, biochemical, and phenotype variation in chrysanthemum. Plant Cell, Tissue and Organ Culture, v.143, n.2, p.331-344, 2020. https://doi.org/10.1007/ s11240-020-01920-4

VLACHOU, G.; TRIGKA, M.; PAPAFOTIOU, M. Effect of plant growth regulators and agar concentration on shoot multiplication and hyperhydricity of Anthyllis barba- jovis. I International Symposium on Botanical Gardens and Landscapes 1298, p.341-346, 2019. https://doi.org/10.17660/ActaHortic.2020.1298.47

WANG, Y., LI, J.; YANG, L.; CHAN, Z. Melatonin antagonizes cytokinin responses to stimulate root growth in Arabidopsis. Journal of Plant Growth Regulation, p.1-13, 2022. https://doi.org/10.1007/s00344-022-10663-9

WU, J.; WANG, G.; VIJVER, M.G.; BOSKER, T.; PEIJNENBURG, W.J. Foliar versus root exposure of AgNPs to lettuce: Phytotoxicity, antioxidant responses and internal translocation. Environmental Pollution, v.261, 2020. https://doi.org/10.1016/j.envpol.2020.114117

ZHANG, W.; XIA, L.; PENG, F.; SONG, C.; MANZOOR, M.A.; CAI, Y.; JIN, Q. Transcriptomics and metabolomics changes triggered by exogenous 6-benzylaminopurine in relieving epicotyl dormancy of Polygonatum cyrtonema Hua seeds. Frontiers in Plant Science, v.13, 2022. https://doi.org/10.3389/fpls.2022.961899

Downloads

Publicado

2023-08-16

Edição

Seção

Artigos