Silver nanoparticles eliminate hyperhydricity in micropropagated Lavender
DOI:
https://doi.org/10.1590/2447-536X.v29i3.2565Keywords:
AgNPs, Lavandula angustifolia Mill., tissue culture, vitrificationAbstract
It is challenging to plant lavender outside of suitable conditions. This economically important plant requires optimal conditions to germinate and produce a high yield. To increase the quality of this plant, tissue culture is utilized. The most problematic aspect of lavender micropropagation is that cytokinin (CK) causes hyperhydricity (HH) during the shooting process. Consequently, this study was conducted to resolve HH in micropropagated lavender plantlets. Different concentrations of silver nanoparticles (Ag- NPs) were applied in conjunction with 1.0 mg L-1 6-benzylaminopurine (BA). Then, the performance of HH, growth and develop- ment, as well as total phenolic (TPC) and total flavonoid (TFC) content, were evaluated. The application of 20 mg L-1 of AgNPs was found to be the optimal method for halting HH. Although shoot proliferation was lower than in BA-supplemented media-grown plants, adding this concentration of AgNPs improved shoot and root quality. An increase in secondary metabolites and antioxidant activity may have caused the remedy of HH.
Downloads
References
ASSAAD, H.; ZHOU, L.; CARROLL, R.; WU, G. Rapid Publication-Ready MS-Word Tables for One-Way ANOVA. Springer Plus, v.3, n.1, p.1-8, 2014. https://doi.org/10.1186/2193-1801-3-474
BATOOL, S.U.; JAVED, B.; ZEHRA, S.S.; MASHWANI, Z.U.R.; RAJA, N.I.; KHAN, T.; ALHAITHLOUL, H.A.S.; ALGHANEM, S.M.; AL-MUSHHIN, A.A.; HASHEM, L. Exogenous applications of bio-fabricated silver nanoparticles to improve biochemical, antioxidant, fatty acid and secondary metabolite contents of sunflower. Nanomaterials, v.11, n.7, 1750, 2021. https://doi.org/10.3390/nano11071750
CASER, M.; DEMASI, S.; MOZZANINI, E.; CHIAVAZZA, P.; SCARIOT, V. Germination Performances of 14 Wildflowers screened for shaping urban landscapes in mountain areas. Sustainability, v.14, n.5, p.2641, 2022. https://doi.org/10.3390/su14052641
CHAIYANA, W.; PUNYOYAI, C.; SOMWONGIN, S.; LEELAPORNPISID, P.; INGKANINAN, K.; WARANUCH, N.; MUELLER, M. Inhibition of 5α-reductase, IL-6 secretion, and oxidation process of Equisetum debile Roxb. ex vaucher extract as functional food and nutraceuticals ingredients. Nutrients, v.9, n.10, p.1105, 2017. https://doi.org/10.3390/nu9101105
DO, Q.D.; ANGKAWIJAYA, A.E.; TRAN-NGUYEN, P.L.; HUYNH, L.H.; SOETAREDJO, F.E.; ISMADJI, S.; JU, Y.H. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. Journal of Food and Drug Analysis, v.22, n.3, p.296-302, 2014. https://doi.org/10.1016/j.jfda.2013.11.001
FOO, P.C.; LEE, Z.H.; CHIN, C.K.; SUBRAMANIAM, S.; CHEW, B.L. Shoot induction in white eggplant (Solanum melongena L. cv. Bulat Putih) using 6-benzylaminopurine and kinetin. Tropical life Sciences Research, v.29, n.2, p.119-129, 2018. https://doi.org/10.21315/tlsr2018.29.2.9
GAO, H.; XIA, X.; AN, L. Critical roles of the activation of ethylene pathway genes mediated by DNA demethylation in Arabidopsis hyperhydricity. The Plant Genome, v.15, n.2, e20202, 2022. https://doi.org/10.1002/tpg2.20202
GUPTA, S.D.; AGARWAL, A.; PRADHAN, S. Phytostimulatory effect of silver nanoparticles (AgNPs) on rice seedling growth: An insight from antioxidative enzyme activities and gene expression patterns. Ecotoxicology and Environmental Safety, v.161, p.624-633, 2018. https://doi.org/10.1016/j.ecoenv.2018.06.023
GUZMÁN-BÁEZ, G.A.; TREJO-TÉLLEZ, L.I.; RAMÍREZ- OLVERA, S.M.; SALINAS-RUÍZ, J.; BELLO-BELLO, J.J.; ALCÁNTAR-GONZÁLEZ, G.; HIDALGO-CONTRERAS, J.V.; GÓMEZ-MERINO, F.C. Silver nanoparticles increase nitrogen, phosphorus, and potassium concentrations in leaves and stimulate root length and number of roots in tomato seedlings in a hormetic manner. Dose-Response, v.19, n.4, 2021. https://doi.org/10.1177/15593258211044576
IVANOVA, M.; VAN STADEN, J. Influence of gelling agent and cytokinins on the control of hyperhydricity in Aloe polyphylla. Plant Cell, Tissue and Organ Culture, v.104, n.1, p.13-21, 2011.
JADCZAK, P.; KULPA, D.; BIHUN, M.; PRZEWODOWSKI, W. Positive effect of AgNPs and AuNPs in in vitro cultures of Lavandula angustifolia Mill. Plant Cell, Tissue and Organ Culture. v.139, n.1, p.191- 197, 2019. https://doi.org/10.1007/s11240-019-01656-w
JADCZAK, P.; KULPA, D.; DROZD, R.; PRZEWODOWSKI, W.; PRZEWODOWSKA, A. Effect of AuNPs and AgNPs on the antioxidant system and antioxidant activity of lavender (Lavandula angustifolia Mill.) from in vitro cultures. Molecules, v.25, n.23, 5511, 2020. https://doi.org/10.3390/molecules25235511
JAN, T.; GUL, S.; KHAN, A.; PERVEZ, S.; NOOR, A.; AMIN, H.; BIBI, S.; NAWAZ, M.; RAHIM, A.; AHMAD, M. Range of factors in the reduction of hyperhydricity associated with in vitro shoots of Salvia santolinifolia Bioss. Brazilian Journal of Biology, v.83, 2021. https://doi.org/10.1590/1519-6984.246904
KAVEH, R.; LI, Y.S.; RANJBAR, S.; TEHRANI, R.; BRUECK, C.L.; VAN AKEN, B. Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environmental Science & Technology, v.47, n.18, p.10637-10644, 2013. https://doi.org/10.1021/ es402209w
KEMAT, N.; VISSER, R.G.; KRENS, F.A. Hypolignification: A decisive factor in the development of hyperhydricity. Plants, v.10, n.12, 2625, 2021. https://doi.org/10.3390/plants10122625
KOEFENDER, J.; MANFIO, C.E.; CAMERA, J.N.; SCHOFFEL, A.; GOLLE, D.P. Micropropagation of lavender: a protocol for production of plantlets. Horticultura Brasileira, v.39, p.404-410, 2021. https://doi.org/10.1590/s0102-0536-20210409
KUREPA, J.; SHULL, T.E.; SMALLE, J.A. Antagonistic activity of auxin and cytokinin in shoot and root organs. Plant Direct, v.3, n.2, e00121, 2019. https://doi.org/10.1002/pld3.121
LI, N.Y.; TANG, H.R.; GE, C.; MO, F.; XIAO, Y.H.; LUO, Y. Tissue culture of Lavandula angustifolia L. AIP Conference Proceedings, v.2079, n.1, p.020014, 2019. https://doi.org/10.1063/1.5092392
LICHTENTHALER, H.K.; BUSCHMANN, C. Chlorophylls and carotenoids: Measurement and characterization by UVVIS spectroscopy. Current Protocols in Food Analytical Chemistry, v.1, n.1, p.F4-3, 2001. https://doi.org/10.1002/0471142913.faf0403s01
MACHADO, M.P.; SILVA, A.L.L. D.; BIASI, L.A.; DESCHAMPS, C.; BESPALHOK FILHO, J.C.; ZANETTE, F. Influence of calcium content of tissue on hyperhydricity and shoot-tip necrosis of in vitro regenerated shoots of Lavandula angustifolia Mill. Brazilian Archives of Biology and Technology, v.57, p.636-643, 2014. https://fvdoi.org/10.1590/S1516-8913201402165
NIKAM, T.D.; MULYE, K.V.; CHAMBHARE, M.R.;NIKULE, H.A.; AHIRE, M.L. Reduction in hyperhydricity and improvement in in vitro propagation of commercial hard fibre and medicinal glycoside yielding Agave sisalana Perr. ex Engelm by NaCl and polyethylene glycol. Plant Cell, Tissue and Organ Culture, v.138, n.1, p.67-78, 2019. https://doi.org/10.1007/s11240-019-01603-9
PENCE, V.C.; FINKE, L.R.; NIEDZ, R.P. Evaluating a DOE screen to reduce hyperhydricity in the threatened plant, Cycladenia humilis var. Jonesii. In Vitro Cellular & Developmental Biology-Plant, v.56, n.2, p.215-229, 2020. https://doi.org/10.1007/s11627-019-10038-y
PETRUŞ-VANCEA, A. Cell ultrastructure and chlorophyll pigments in hyperhydric and non-hyperhydric Beta vulgaris var. Conditiva plantlets, treated with deuterium depleted water. Plant Cell, Tissue and Organ Culture, v.135, n.1, p.13-21, 2018. https://doi.org/10.1007/s11240-018-1439-0
RANI, R.; SHARMA, S. Recent advances in medicinal applications of essential oil. Materials Today: Proceedings, 2022. https://doi.org/10.1016/j.matpr.2022.06.438
SALEM, J. Effects of anti-ethylene compounds on vitrification and genome fidelity of Stevia rebaudiana Bertoni. Egyptian Journal of Botany, v.60, n.2, p.519- 535, 2020. https://doi.org/10.21608/ejbo.2020.19706.1392
SEHNAL, K.; ÖZDOĞAN, Y.; STANKOVA, M.; TOTHOVA, Z.; UHLIROVA, D.; VSETICKOVA, M.; KIZEK, R.; HOSNEDLOVA, B.; KEPINSKA, M.; RUTTKAY-NEDECKY, B. Effect of silver nanoparticles (AgNPs) prepared by green synthesis from sage leaves (Salvia officinalis) on maize chlorophyll content. NANOCON Conference Proceedings, p.457-462, 2020. https://doi.org/10.37904/nanocon.2019.8521
SHARMA, L.; CHANDRA, M.; PUNEETA, A. Health benefits of lavender (Lavandula angustifolia). International Journal of Physiology, Nutrition and Physical Education, v.4, n.1, p.1274-1277, 2020.
SILVA, J.A.; NEZAMI-ALANAGH, E.; BARREAL, M.E.; KHER, M.M.; WICAKSONO, A.; GULYÁS, A.; HIDVÉGI, N.; MAGYAR-TÁBORI, K.; MENDLER-DRIENYOVSZKI, N.; MÁRTON, L. Shoot tip necrosis of in vitro plant cultures: a reappraisal of possible causes and solutions. Planta, v.252, n.3, p.1-35, 2020. https://doi.org/10.1007/s00425-020-03449-4
SREELEKSHMI, R.; SIRIL, E.; MUTHUKRISHNAN, S. Role of biogenic silver nanoparticles on hyperhydricity reversion in Dianthus chinensis L. an in vitro model culture. Journal of Plant Growth Regulation, v.41, n.1, p.23-39, 2022. https://doi.org/10.1007/s00344-020-10276-0
SULTANA, T.; JAVED, B.; RAJA, N.I. Silver nanoparticles elicited physiological, biochemical, and antioxidant modifications in rice plants to control Aspergillus flavus. Green Processing and Synthesis, v.10, n.1, p.314-324, 2021. https://doi.org/10.1515/gps-2021-0034
SZEKELY-VARGA, Z.; KENTELKY, E.; CANTOR, M. Effect of gibberellic acid on the seed germination of Lavandula angustifolia Mill. Romanian. Journal of Horticulture, v.2, p.169-176, 2021. https://doi.org/10.51258/RJH.2021.22
TASCAN, A.; ADELBERG, J.; TASCAN, M.; RIMANDO, A.; JOSHEE, N.; YADAV, A. K. Hyperhydricity and flavonoid content of Scutellaria species in vitro on polyester-supported liquid culture systems. HortScience, v.45, v.11, p.1723-1728, 2010. https://doi.org/10.21273/ HORTSCI.45.11.1723
TORRENT, L.; IGLESIAS, M.; MARGUÍ, E.; HIDALGO, M.; VERDAGUER, D.; LLORENS, L.; KODRE, A.; KAVČIČ, A.; VOGEL-MIKUŠ, K. Uptake, translocation and ligand of silver in Lactuca sativa exposed to silver nanoparticles of different size, coatings and concentration. Journal of Hazardous Materials, v.384, 2020. https://doi.org/10.1016/j.jhazmat.2019.121201
TRIPATHI, D.; PANDEY-RAI, S. Impacts of green synthesized silver nanoparticles with natural bioactive compounds on plant’s developmental behavior. Natural Bioactive Compounds, p.435-452, 2021. https://doi.org/10.1016/B978-0-12-820655-3.00022-7
TUNG, H.T.; NGUYEN, P.L.H.; VAN LICH, T.; NGAN, H.T.M.; LUAN, V.Q.; KHAI, H.D.; MAI, N.T.N.; VINH, B.V.T.; NHUT, D.T. Enhanced shoot and plantlet quality of Gerbera (Gerbera jamesonii Revolution Yellow) cultivar on medium containing silver and cobalt nanoparticles. Scientia Horticulturae, v.306, 111445, 2022. https://doi.org/10.1016/j.scienta.2022.111445
TYMOSZUK, A.; KULUS, D. Silver nanoparticles induce genetic, biochemical, and phenotype variation in chrysanthemum. Plant Cell, Tissue and Organ Culture, v.143, n.2, p.331-344, 2020. https://doi.org/10.1007/ s11240-020-01920-4
VLACHOU, G.; TRIGKA, M.; PAPAFOTIOU, M. Effect of plant growth regulators and agar concentration on shoot multiplication and hyperhydricity of Anthyllis barba- jovis. I International Symposium on Botanical Gardens and Landscapes 1298, p.341-346, 2019. https://doi.org/10.17660/ActaHortic.2020.1298.47
WANG, Y., LI, J.; YANG, L.; CHAN, Z. Melatonin antagonizes cytokinin responses to stimulate root growth in Arabidopsis. Journal of Plant Growth Regulation, p.1-13, 2022. https://doi.org/10.1007/s00344-022-10663-9
WU, J.; WANG, G.; VIJVER, M.G.; BOSKER, T.; PEIJNENBURG, W.J. Foliar versus root exposure of AgNPs to lettuce: Phytotoxicity, antioxidant responses and internal translocation. Environmental Pollution, v.261, 2020. https://doi.org/10.1016/j.envpol.2020.114117
ZHANG, W.; XIA, L.; PENG, F.; SONG, C.; MANZOOR, M.A.; CAI, Y.; JIN, Q. Transcriptomics and metabolomics changes triggered by exogenous 6-benzylaminopurine in relieving epicotyl dormancy of Polygonatum cyrtonema Hua seeds. Frontiers in Plant Science, v.13, 2022. https://doi.org/10.3389/fpls.2022.961899
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Ornamental Horticulture
This work is licensed under a Creative Commons Attribution 4.0 International License.