Micropropagação de Nolana intosa como ferramenta para sua domesticação e conservação

Autores

DOI:

https://doi.org/10.1590/2447-536X.v30.e242678

Palavras-chave:

cultura de tecidos vegetais, flora chilena, nova ornamental, Solanaceae

Resumo

Um protocolo eficiente de micropropagação foi desenvolvido para Nolana intosa I. M. Johnst. Os meios de cultura utilizados foram WPM, DKW e MS como controle. O meio DKW produziu os melhores resultados sobre o desenvolvimento in vitro de N. intonsa, gerando aumento significativo a taxa de multiplicação, formação de brotos laterais, altura e qualidade geral das plântulas. No caso de peso fresco, peso seco e teor de água, não foram observadas diferenças entre MS e DKW, e redução significativa nesses parâmetros foi produzida quando o meio WPM foi usado. Posteriormente, quando DKW foi definido como meio basal, o efeito da suplementação de auxina também foi avaliado. A adição de AIB gerou um efeito favorável sobre as plântulas in vitro. A adição de 0,05 mg L -1 de AIB melhorou a taxa de multiplicação (organogênese), o desenvolvimento da parte aérea, a altura da planta e reduziu de forma significativa os danos nas mudas. O peso fresco, o peso seco e os teores de água também mostraram um aumento significativo quando a suplementação de AIB foi adicionada ao meio DKW. Por fim, foi possível a aclimatação das mudas, obtendo-se plantas de vasos prontas capazes de crescer em casa de vegetação. O desenvolvimento de um protocolo de micropropagação de N. intonsa pode auxiliar na conservação e utilização sustentável desta espécie endêmica do Chile.

Downloads

Não há dados estatísticos.

Referências

AHMED, Z.S.; SALIM, A.M.; ALLAWI, A.K. Effect of growth regulators (BA, IBA) on micropropagation of Gardenia jasminoides L. in vitro. International Journal of Agricultural and Statistical Sciences, v.17, p.181–186, 2021. https://connectjournals.com/03899.2021.17.181

ARAYA-OSSES, D.; CASANUEVA, A.; ROMÁN-FIGUEROA, C.; URIBE, J.M.; PANEQUE M. Climate change projections of temperature and precipitation in Chile based on statistical downscaling. Climate Dynamics, v.54, p.4309-4330, 2020. https://doi.org/10.1007/s00382-020- 05231-4

CAO, Y.; MA, C.; YU, H.; TAN, Q.; DHANKHER, O.P.; WHITE, J.C.; XING, B. The role of sulfur nutrition in plant response to metal(loid) stress: Facilitating biofortification and phytoremediation. Journal of Hazardous Materials, v.443, p.130283, 2023. https://doi.org/10.1016/j.jhazmat.2022.130283

DOUGLAS, A.C.; FREYRE, R. Floral development, stigma receptivity and pollen viability in eight Nolana (Solanaceae) species. Euphytica, v.174, p.105–117, 2010. https://doi.org/10.1007/s10681-010-0145-8

DRIVER, J.A.; KUNIYUKI, A.H. In vitro propagation of Paradox Walnut root stock. HortScience, v.19, p.507–509, 1984. https://doi.org/10.21273/HORTSCI.19.4.507

ELANSARY, H.O.; SALEM, M.Z.M. Morphological and physiological responses and drought resistance enhancement of ornamental shrubs by trinexapac-ethyl application. Scientia Horticulturae, v.189, p.1-11, 2015. https://doi.org/10.1016/j.scienta.2015.03.033

FARIA, D.V.; CORREIA, L.N.F.; MATOS, E.M.; SOUZA, M.V.C.; BATISTA, D.S.; COSTA, M.G.C.; PAIVANETO, V.B.; XAVIER, A.; HERNÁNDEZ, A.; MIRANDA, M.D.; ARELLANO, E.C.; DOBBS, C. Landscape trajectories and their effect on fragmentation for a Mediterranean semi-arid ecosystem in Central Chile. Journal of Arid Environments, v.127, p.74-81, 2016. https://doi.org/10.1016/j.jaridenv.2015.10.004

KULAK, V.; LONGBOAT, S.; BRUNET, N.D.; SHUKLA, M.; SAXENA, P. In vitro technology in plant conservation: relevance to biocultural diversity. Plants, v.11, p.1-20, 2022. https://doi.org/10.3390/plants11040503

LLOYD, G.; MCCOWN, B. Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Proceedings of the International Plant Propagator’s Society, p.421-427, 1980.

MACHADO, M.P; SILVA, A.L.L.; BIASI, L.A.; DESCHAMPS, C.; BESPALHOK FILHO, J.C.; ZANETTE, F. Influence of calcium content of tissue on hyperhydricity and shoot-tip necrosis of in vitro regenerated shoots of Lavandula angustifolia Mill. Brazilian Archives of Biology and Technology, v.57, p.636-643, 2014. http://dx.doi.org/10.1590/S1516-8913201402165

MAYER, P.; LANDER, P.; GLENN, D. Outdoor water use: abundant savings, scarce research. Journal - American Water Works Association, v.107, p.61-66, 2015. https://doi.org/10.5942/jawwa.2015.107.0029

MESA, A.; MUÑOZ, V.; PINTO, R. Presencia de Nolana adansonii (Roemer y Schultes) Johnst. y Nolana intonsa Johnst. (Nolanaceae) en el desierto costero de Iquique, Norte de Chile. Noticiario Mensual del Museo Nacional de Historia Natural, v.333, p.3-7, 1998.

MOHAMAD, M.E.; AWAD, A.A.; MAJRASHI, A.; ESADEK, O.A.A.; EL-SAADONY, M.T.; SAAD, A.M.; GENDY, A.S. In vitro study on the effect of cytokines and auxins addition to growth medium on the micropropagation and rooting of Paulownia species (Paulownia hybrid and Paulownia tomentosa). Saudi Journal of Biological Sciences, v.29, p.1598-1603, 2022. https://doi.org/10.1016/j.sjbs.2021.11.003

MORALES-TAPIA, P.; GAMBARDELLA, M. Control of shoot-tip necrosis during Argylia radiata in vitro multiplication. Ornamental Horticulture, v.28, p.423-430, 2022. https://doi.org/10.1590/2447-536x. v28i4.2536

MORALES, P. Argylia radiata micropropagation, a biotechnological tool to domesticate a new ornamental crop. Acta Horticulturae, v.1240, p.69- 72, 2019. https://dpi.org/10.17660/ActaHortic.2019.1240.11

MORALES, P.; MONTAÑOLA, M.J. Development of Nolana carnosa micropropagation protocol. Acta Horticulturae, v.1224, p.229-234, 2018. https://doi.org/10.17660/ActaHortic.2018.1224.31

MOREIRA-MUÑOZ, A.; PALCHETTI, M.V.; MORALES-FIERRO, V.; DUVAL, V.S.; ALLESCH-VILLALOBOS, R.; GONZÁLEZ-OROZCO, C.E. Diversity and conservation gap analysis of the Solanaceae of Southern South America. Frontiers in Plant Science, v.13, p.1-7, 2022. https://doi.org/10.3389/fpls.2022.854372

MUÑOZ, R.C.; QUINTANA, J.; FALVEY, M.J.; RUTLLANT, J.A.; GARREAUD, R. Coastal clouds at the Eastern Margin of the Southeast Pacific: Climatology and trends. Journal of Climate, v.29, p. 4525-4542, 2016. https://doi.org/10.1175/JCLI-D-15-0757.1

MURASHIGE, T.; SKOOG, F. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiologia Plantarum, v.15, p.473-497, 1962. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

NARAYAN, O.P.; KUMAR, P.; YADAV, B.; DUA, M.; JOHRI, A.K. Sulfur nutrition and its role in plant growth and development. Plant Signaling and Behavior, e2030082-3, 2022. https://doi.org/10.1080/15 592324.2022.2030082

PHILLIPS, G.C.; GARDA, M. Plant tissue culture media and practices: an overview. In Vitro Cellular and Developmental Biology - Plant, v.55, p.242–257, 2019. https://doi.org.10.1007/s11627-019-09983-5

SÁNCHEZ-BLANCO, M.J.; ORTUÑO, M.F.; BAÑON, S.; ÁLVAREZ, S. Deficit irrigation as a strategy to control growth in ornamental plants and enhance their ability to adapt to drought conditions. Journal of Horticultural Science and Biotechnology, v.94, p.137-150, 2019. https://doi.org.10.1080/14620316.2019.1570353

SOFIAN, A.A.; S. PRIHASTANTI, S.; SUEDY, S.W.A. Effect of IBA and BAP on shoot growth of Tawangmangu Tangerine (Citrus reticulate) by In-Vitro. Biosaintifika: Journal of Biology & Biology Education, v.10, p.379–387, 2018. https://doi.org/10.15294/biosaintifika.v10i2.14977

THAKUR, M.; SHARMA, V.; LUHARCH, R. Propagation of plum (Prunus salicina L.) cultivar Frontier in vitro through control of shoot tip necrosis (STN) and validation of genetic integrity using ISSR markers. Plant Physiology Reports, v.26, p.238–246, 2021. https://doi.org/10.1007/s40502-021-00580-6

TWAIJ, B.M.; JAZAR, Z.; HASAN, M.N. Trends in the use of tissue culture, applications and future aspects. International Journal of Plant Biology, v.11, p.8385, 2020. https://doi.org/10.4081/pb.2020.8385

WERDEN, L.K.; SUGII, N.C.; WEISENBERGER, L.; KEIR, M.J.; KOOB, G.; ZAHAWI, R.A. Ex situ conservation of threatened plant species in island biodiversity hotspots: A case study from Hawaii. Biological Conservation, v.243, p.108435, 2020. https://doi.org/10.1016/j.biocon|.2020.108435

WU, Z.; NAVEED, S.; ZHANG, C.; GE, Y. Adequate supply of sulfur simultaneously enhances iron uptake and reduces cadmium accumulation in rice grown in hydroponic culture. Environmental Pollution, v.262, p.114327, 2020. https://doi.org/10.1016/j.envpol.2020.114327

Downloads

Publicado

2024-04-30

Edição

Seção

Artigos