Micropropagation of Nolana intonsa as a tool for its domestication and conservation
DOI:
https://doi.org/10.1590/2447-536X.v30.e242678Keywords:
chilean flora, new ornamental, plant tissue culture, SolanaceaeAbstract
A complete protocol of Nolana intonsa I. M. Johnst, micropropagation was developed. The culture media used were WPM, DKW, and MS as control. DKW medium produced the best results over in vitro development of N. intonsa, generating a significant increase in the multiplication rate, lateral shoots formation, height, and general quality of the plantlets. In the case of fresh weight, dry weight, and water content, no differences were observed between MS and DKW, but a significant decrease in these parameters was produced when the WPM medium was used. Subsequently, when DKW was defined as basal medium, the effect of auxin supplementation was also evaluated. The addition of IBA generated a desirable effect over the in vitro plantlets. The addition of 0.05 mg L-1 of IBA improve the multiplication rate, the shoot’s development, plant’s height, and reduced in a significant way the damage to the plantlets. Fresh weight, dry weight, and water contents also showed a significant increase when IBA supplementation was added to the DKW medium. The plants where acclimatization of the plantlets was possible, obtaining finished pot plants capable of growth under greenhouse conditions. The development of a micropropagation protocol of N. intonsa could help the conservation and sustainable utilization of this endemic Chilean species.
Downloads
References
AHMED, Z.S.; SALIM, A.M.; ALLAWI, A.K. Effect of growth regulators (BA, IBA) on micropropagation of Gardenia jasminoides L. in vitro. International Journal of Agricultural and Statistical Sciences, v.17, p.181–186, 2021. https://connectjournals.com/03899.2021.17.181
ARAYA-OSSES, D.; CASANUEVA, A.; ROMÁN-FIGUEROA, C.; URIBE, J.M.; PANEQUE M. Climate change projections of temperature and precipitation in Chile based on statistical downscaling. Climate Dynamics, v.54, p.4309-4330, 2020. https://doi.org/10.1007/s00382-020- 05231-4
CAO, Y.; MA, C.; YU, H.; TAN, Q.; DHANKHER, O.P.; WHITE, J.C.; XING, B. The role of sulfur nutrition in plant response to metal(loid) stress: Facilitating biofortification and phytoremediation. Journal of Hazardous Materials, v.443, p.130283, 2023. https://doi.org/10.1016/j.jhazmat.2022.130283
DOUGLAS, A.C.; FREYRE, R. Floral development, stigma receptivity and pollen viability in eight Nolana (Solanaceae) species. Euphytica, v.174, p.105–117, 2010. https://doi.org/10.1007/s10681-010-0145-8
DRIVER, J.A.; KUNIYUKI, A.H. In vitro propagation of Paradox Walnut root stock. HortScience, v.19, p.507–509, 1984. https://doi.org/10.21273/HORTSCI.19.4.507
ELANSARY, H.O.; SALEM, M.Z.M. Morphological and physiological responses and drought resistance enhancement of ornamental shrubs by trinexapac-ethyl application. Scientia Horticulturae, v.189, p.1-11, 2015. https://doi.org/10.1016/j.scienta.2015.03.033
FARIA, D.V.; CORREIA, L.N.F.; MATOS, E.M.; SOUZA, M.V.C.; BATISTA, D.S.; COSTA, M.G.C.; PAIVANETO, V.B.; XAVIER, A.; HERNÁNDEZ, A.; MIRANDA, M.D.; ARELLANO, E.C.; DOBBS, C. Landscape trajectories and their effect on fragmentation for a Mediterranean semi-arid ecosystem in Central Chile. Journal of Arid Environments, v.127, p.74-81, 2016. https://doi.org/10.1016/j.jaridenv.2015.10.004
KULAK, V.; LONGBOAT, S.; BRUNET, N.D.; SHUKLA, M.; SAXENA, P. In vitro technology in plant conservation: relevance to biocultural diversity. Plants, v.11, p.1-20, 2022. https://doi.org/10.3390/plants11040503
LLOYD, G.; MCCOWN, B. Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Proceedings of the International Plant Propagator’s Society, p.421-427, 1980.
MACHADO, M.P; SILVA, A.L.L.; BIASI, L.A.; DESCHAMPS, C.; BESPALHOK FILHO, J.C.; ZANETTE, F. Influence of calcium content of tissue on hyperhydricity and shoot-tip necrosis of in vitro regenerated shoots of Lavandula angustifolia Mill. Brazilian Archives of Biology and Technology, v.57, p.636-643, 2014. http://dx.doi.org/10.1590/S1516-8913201402165
MAYER, P.; LANDER, P.; GLENN, D. Outdoor water use: abundant savings, scarce research. Journal - American Water Works Association, v.107, p.61-66, 2015. https://doi.org/10.5942/jawwa.2015.107.0029
MESA, A.; MUÑOZ, V.; PINTO, R. Presencia de Nolana adansonii (Roemer y Schultes) Johnst. y Nolana intonsa Johnst. (Nolanaceae) en el desierto costero de Iquique, Norte de Chile. Noticiario Mensual del Museo Nacional de Historia Natural, v.333, p.3-7, 1998.
MOHAMAD, M.E.; AWAD, A.A.; MAJRASHI, A.; ESADEK, O.A.A.; EL-SAADONY, M.T.; SAAD, A.M.; GENDY, A.S. In vitro study on the effect of cytokines and auxins addition to growth medium on the micropropagation and rooting of Paulownia species (Paulownia hybrid and Paulownia tomentosa). Saudi Journal of Biological Sciences, v.29, p.1598-1603, 2022. https://doi.org/10.1016/j.sjbs.2021.11.003
MORALES-TAPIA, P.; GAMBARDELLA, M. Control of shoot-tip necrosis during Argylia radiata in vitro multiplication. Ornamental Horticulture, v.28, p.423-430, 2022. https://doi.org/10.1590/2447-536x. v28i4.2536
MORALES, P. Argylia radiata micropropagation, a biotechnological tool to domesticate a new ornamental crop. Acta Horticulturae, v.1240, p.69- 72, 2019. https://dpi.org/10.17660/ActaHortic.2019.1240.11
MORALES, P.; MONTAÑOLA, M.J. Development of Nolana carnosa micropropagation protocol. Acta Horticulturae, v.1224, p.229-234, 2018. https://doi.org/10.17660/ActaHortic.2018.1224.31
MOREIRA-MUÑOZ, A.; PALCHETTI, M.V.; MORALES-FIERRO, V.; DUVAL, V.S.; ALLESCH-VILLALOBOS, R.; GONZÁLEZ-OROZCO, C.E. Diversity and conservation gap analysis of the Solanaceae of Southern South America. Frontiers in Plant Science, v.13, p.1-7, 2022. https://doi.org/10.3389/fpls.2022.854372
MUÑOZ, R.C.; QUINTANA, J.; FALVEY, M.J.; RUTLLANT, J.A.; GARREAUD, R. Coastal clouds at the Eastern Margin of the Southeast Pacific: Climatology and trends. Journal of Climate, v.29, p. 4525-4542, 2016. https://doi.org/10.1175/JCLI-D-15-0757.1
MURASHIGE, T.; SKOOG, F. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiologia Plantarum, v.15, p.473-497, 1962. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
NARAYAN, O.P.; KUMAR, P.; YADAV, B.; DUA, M.; JOHRI, A.K. Sulfur nutrition and its role in plant growth and development. Plant Signaling and Behavior, e2030082-3, 2022. https://doi.org/10.1080/15 592324.2022.2030082
PHILLIPS, G.C.; GARDA, M. Plant tissue culture media and practices: an overview. In Vitro Cellular and Developmental Biology - Plant, v.55, p.242–257, 2019. https://doi.org.10.1007/s11627-019-09983-5
SÁNCHEZ-BLANCO, M.J.; ORTUÑO, M.F.; BAÑON, S.; ÁLVAREZ, S. Deficit irrigation as a strategy to control growth in ornamental plants and enhance their ability to adapt to drought conditions. Journal of Horticultural Science and Biotechnology, v.94, p.137-150, 2019. https://doi.org.10.1080/14620316.2019.1570353
SOFIAN, A.A.; S. PRIHASTANTI, S.; SUEDY, S.W.A. Effect of IBA and BAP on shoot growth of Tawangmangu Tangerine (Citrus reticulate) by In-Vitro. Biosaintifika: Journal of Biology & Biology Education, v.10, p.379–387, 2018. https://doi.org/10.15294/biosaintifika.v10i2.14977
THAKUR, M.; SHARMA, V.; LUHARCH, R. Propagation of plum (Prunus salicina L.) cultivar Frontier in vitro through control of shoot tip necrosis (STN) and validation of genetic integrity using ISSR markers. Plant Physiology Reports, v.26, p.238–246, 2021. https://doi.org/10.1007/s40502-021-00580-6
TWAIJ, B.M.; JAZAR, Z.; HASAN, M.N. Trends in the use of tissue culture, applications and future aspects. International Journal of Plant Biology, v.11, p.8385, 2020. https://doi.org/10.4081/pb.2020.8385
WERDEN, L.K.; SUGII, N.C.; WEISENBERGER, L.; KEIR, M.J.; KOOB, G.; ZAHAWI, R.A. Ex situ conservation of threatened plant species in island biodiversity hotspots: A case study from Hawaii. Biological Conservation, v.243, p.108435, 2020. https://doi.org/10.1016/j.biocon|.2020.108435
WU, Z.; NAVEED, S.; ZHANG, C.; GE, Y. Adequate supply of sulfur simultaneously enhances iron uptake and reduces cadmium accumulation in rice grown in hydroponic culture. Environmental Pollution, v.262, p.114327, 2020. https://doi.org/10.1016/j.envpol.2020.114327
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Ornamental Horticulture
This work is licensed under a Creative Commons Attribution 4.0 International License.