Tratamento foliar com metil jasmonato na restrição do crescimento e na anatomia de foliar de Begônia ‘Dragon Wing’
DOI:
https://doi.org/10.1590/2447-536X.v30.e242760Palavras-chave:
histologia, jasmonatos, planta envasada, regulador de crescimento vegetalResumo
A aplicação de reguladores de crescimento vegetal, principalmente os produtos inibidores de giberelina, é o principal recurso utilizado para o controle do crescimento de plantas ornamentais, no entanto, é crescente a busca por produtos alternativos devido ao risco de toxicidade ambiental causado. O metil jasmonato (MeJa) é uma substância natural encontrada em plantas e considerado de baixa toxicidade quando utilizado adequadamente, seu uso como regulador de crescimento tem se mostrado promissor para o controle do crescimento de plantas, mas seus efeitos não foram totalmente explorados na restrição do crescimento de ornamentais. O presente trabalho investigou os efeitos da aplicação foliar de diferentes concentrações de MeJa (0, 50, 100 e 150 µM) no crescimento e na anatomia foliar de Begônia ‘Dragon Wing’ Pink e Red. Foram avaliados parâmetros de crescimento das plantas e conduzidas análises histológicas quali-quantitativas da folha da Begônia. O MeJa foi eficiente em compactar a planta, reduzindo a altura em 17.57% e diâmetro em 8.98% sem comprometer a biomassa, crescimento radicular e aspectos do florescimento. A concentração média estudada também provocou alterações na anatomia foliar, aumentando a espessura da epiderme abaxial, reduzindo a espessura do mesofilo, número de cristais de oxalato de cálcio e o tamanho e o número de estômatos. Os resultados demonstraram o efeito promissor do MeJa no controle de crescimento de plantas ornamentais envasadas.
Downloads
Referências
ALJASER, J.A.; ANDERSON, N.O. Effects of a gibberellin inhibitor on flowering, vegetative propagation, and production of rapid generation cycling Gladiolus for potted plant production. HortScience Horts, v.56, n.3, p.357-362, 2021. https://doi.org/10.21273/HORTSCI15535-20
ASLAM, S.; GUL, N.; MIR, M.A.; ASGHER, M.; AL-SULAMI, N.; ABULFARAJ, A.A.; QARI, S. Role of jasmonates, calcium, and glutathione in plants to combat abiotic stresses through precise signaling cascade. Frontiers in Plant Science, v.12, p.1-29, 2021. https://doi.org/10.3389/fpls.2021.668029
CHEN, C.; CHEN, H.; NI, M.; YU, F. Methyl jasmonate application and flowering stage affect scent emission of Styrax japonicus. Flavour and Fragrance Journal, v.36, n.4, p.497-504, 2021. https://doi.org/10.1002/ffj.3654
COLLADO, C.E.; HERNÁNDEZ, R. Effects of light intensity, spectral composition, and paclobutrazol on the morphology, physiology, and growth of Petunia, Geranium, Pansy, and Dianthus ornamental transplants. Journal of Plant Growth Regulation, v.41, p.461-478, 2022. https://doi.org/10.1007/s00344-021-10306-5
DAS, D.; BEGUM, M.; PAUL, P.; DUTTA, I.; MANDAL, S.; GHOSH, P.; GHOSH, S. Effects of plant growth retardant daminozide (Alar) on neuromuscular co-ordination behavior in Drosophila melanogaster. Journal of Toxicology and Environmental Health, Part A, v.85, n.22, p.921-936, 2022. https://doi.org/10.1080/15287394.2022.2114564
ĐURIĆ, M.; SUBOTIĆ, A.; PROKIĆ, L.; TRIFUNOVIĆ-MOMČILOV, M.; MILOŠEVIĆ, S. Foliar application of methyl jasmonate affects Impatiens walleriana growth and leaf physiology under drought stress. Plant Signaling and Behavior. v.18, n.1, 2023. https://doi.org/10.1080/15592324.2023.2219936
GULERIA, S.; KUMAR, M.; KHAN, A.; KAUSHIK, R. Plant hormones: physiological role and health effects. Journal of Microbiology, Biotechnology and Food Sciences, v.11, n.1, 2021. https://doi.org/10.15414/jmbfs.1147
HAN, X.; HU, Y.; ZHANG, G.; JIANG, Y.; CHEN, X.; YU, D. Jasmonate negatively regulates stomatal development in arabidopsis cotyledons. Plant Physiology, v.176, n.4, p. 2871-2885, 2018. https://doi.org/10.1104/pp.17.00444
HEIJARI, J.; NERG, A.-M.; KAINULAINEN, P.; VIIRI, H.; VUORINEN, M.; HOLOPAINEN, J.K. Application of methyl jasmonate reduces growth but increases chemical defence and resistance against Hylobius abietis in Scots pine seedlings. Entomologia Experimentalis et Applicata, v.115, p.117-124, 2005 https://doi.org/10.1111/j.1570-7458.2005.00263.x
HUYLENBROECK, J.V.; BHATTARAI, K. Ornamental plant breeding: entering a new era?. Ornamental Horticulture, v.28, n.3, p.297-305, 2022. https://doi.org/10.1590/2447-536X.v28i3.2516
KÄMPF, A.N. Produção Comercial De Plantas Ornamentais. Guaíba: Agropecuária, 2000. 245p.
KARIMI, M.; AHMADI, A.; HASHEMI, J.; ABBASI, A.; TAVARINI, S.; POMPEIANO, A.; GUGLIELMINETTI, L.; ANGELINI, L.G. Plant growth retardants (PGRs) affect growth and secondary metabolite biosynthesis in Stevia rebaudiana Bertoni under drought stress. South African Journal of Botany, v.121, p.394-401, 2019. https://doi.org/10.1016/j.sajb.2018.11.028
KARNOVSKY, MJ. A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. Journal of Cell Biology, v.27, p.137-138, 1965.
KOLUPAEV, Y.E.; YASTREBA, T.O. Jasmonate signaling and plant adaptation to abiotic stressors (Review). Applied Biochemistry and Microbiology, v.57, n.1, p.1-19, 2021. https://doi.org/10.1134/S0003683821010117
LI, C.; WANG, P.; MENZIES, N.W.; LOMBI, E.; KOPITTKE, P.M. Effects of methyl jasmonate on plant growth and leaf properties. Journal of Plant Nutrition and Soil Science, v.181, n.3, p.409-418, 2018. https://doi.org/10.1002/jpln.201700373
LIANG, S-X.; LI, H.; CHANG, Q.; BAI, R.; ZHAO, Z.; PANG, G-F. Residual levels and dietary exposure risk assessment of banned pesticides in fruits and vegetables from Chinese market based on long-term nontargeted screening by HPLC-Q-TOF/MS, Ecotoxicology and Environmental Safety, v.248, 2022. https://doi.org/10.1016/j.ecoenv.2022.114280
MACIEJEWSKA, B.; KOPCEWICZ, J. Inhibitory effect of methyl jasmonate on flowering and elongation growth in Pharbitis nil. Journal of Plant Growth Regulation, v.21, n.3, p.216-223, 2002. https://doi.org/10.1007/s003440010061
MARQUES, J.P.R.; NUEVO, L.G. Double-staining method to detect pectin in plant-fungus interaction. Journal of Visualized Experiments, e63432, 2022. https://doi.org/10.3791/63432
MOREIRA, X.; ZAS, R.; SAMPEDRO, L. Methyl Jasmonate as chemical elicitor of induced responses and anti-herbivory resistance in young conifer trees. In: MÉRILLON, J.M.; RAMAWAT, K.G. (Eds.). Plant Defence: Biological Control. Dordrecht: Springer, 2012. p. 345–362.
PAIVA, P.D.O.; REIS, M.V.; SANT’ANA, G.S.; BONIFÁCIO, F.L.; GUIMARÃES, P.H. Sales Flower and ornamental plant consumers profile and behavior. Ornamental Horticulture, v.26, n.3, p.333-345, 2020. https://doi.org/10.1590/2447-536X.v26i3.2158
PANDA, S.; JOZWIAK, A.; SONAWANE, P.D.; SZYMANSKI, J.; KAZACHKOVA, Y.; VAINER, A.; VASUKI KILAMBI, H.; ALMEKIAS-SIEGL, E.; DIKAYA, V.; BOCOBZA, S.; SHOHAT, H., MEIR, S.; WIZLER, G.; GIRI, A.P.; SCHUURINK, R.; WEISS, D.; YASUOR, H.; KAMBLE, A.; AHARONI, A. Steroidal alkaloids defence metabolism and plant growth are modulated by the joint action of gibberellin and jasmonate signalling. New Phytologist, v.233, p.1220-123, 2022. https://doi.org/10.1111/nph.17845
RIHN, A.L.; VELANDIA, M.; WAR NER, L.A.; FULCHER, A.; SCHEXNAYDER, S.; LEBUDE, A. Factors correlated with the propensity to use automation and mechanization by the US nursery industry. Agribusiness, v.39, p.110-130, 2023. https://doi.org/10.1002/agr.21763
SALACHNA, P.; ŁOPUSIEWICZ, Ł.; DYMEK, R.; MATZEN, A.; TROCHANOWICZ, K. Foliar application of gibberellic acid and methyl jasmonate improves leaf greenness in Hesperantha coccinea (syn. Schizostylis coccinea), a rare ornamental plant. Biology and Life Sciences Forum, v.4, n.97, 2021. https://doi.org/10.3390/IECPS2020-08622
SALACHNA, P.; MIKICIUK, M.; ZAWADZIŃSKA, A.; PIECHOCKI, R.; PTAK, P.; MIKICIUK, G.; PIETRAK, A.; ŁOPUSIEWICZ, Ł. Changes in growth and physiological parameters of ×Amarine following an exogenous application of gibberellic acid and methyl jasmonate. Agronomy, v.10, n.980, 2020. https://doi.org/10.3390/agronomy10070980
SAS INSTITUTE INC. 2013. SAS 9.4 Help and Documentation. Cary, NC: SAS Institute Inc.
SHI, X.; CHEN, S.; JIA, Z. The dwarfing effects of different plant growth retardants on Magnolia wufengensis L.Y. Ma et L. R. Wang. Forests, v.12, n.1, p.1-17, 2021. https://doi.org/10.3390/f12010019
SHIN, U.S.; LEE, J.S.; SONG, S.J.; SUH, G.U.; KIM, S.Y.; JEONG, M.J. The effects of plant growth regulators on the growth and flowering of potted Corydalis speciosa native to Korea. Acta Horticulturae, v.1291, p.139-144, 2020. https://doi.org/10.17660/ActaHortic.2020.1291.16
SILLMANN, T.A.; MATTIUZ, C.F.M.M. Growth inhibition of potted begonia via ethanol treatment. Ornamental Horticulture, v.30, e242675, 2024. https://doi.org/10.1590/2447-536X.v30.e242675
SILVA, L.M.; ALQUINI, Y.; CAVALLET, V.J. Inter-relações entre a anatomia vegetal e a produção vegetal. Acta Botanica Brasilica, v.19, n.1, p.183-194, 2005. https://doi.org/10.1590/S0102-33062005000100018
THAKUR, M.; KUMAR, R. Foliar application of plant growth regulators modulates the productivity and chemical profile of damask rose (Rosa damascena Mill.) under mid hill conditions of the western Himalaya. Industrial Crops and Products, v.158, 2020. https://doi.org/10.1016/j.indcrop.2020.113024
VOLK, G.M.; LYNCH-HOLM, V.J.; KOSTMAN, T.A.; GOSS, L.J.; FRANCESCHI, V.R. The role of druse and raphide calcium oxalate crystals in tissue calcium regulation in Pistia stratiotes leaves. Plant Biology, v.4, n.1, p.34-45, 2002. https://doi.org/10.1055/s-2002-20434
WANG, J.; SONG, L.; GONG, X.; XU, J.; LI, M. Functions of jasmonic acid in plant regulation and response to abiotic stress. International Journal of Molecular Sciences, v.21, n.4, p.1446, 2020. https://doi.org/10.3390/ijms21041446
ZHANG, W.; LUO, X.; ZHANG, A.; MA, C.; SUN, K.; ZHANG, T.; DAI, C. Jasmonate signaling restricts root soluble sugar accumulation and drives root-fungus symbiosis loss at flowering by antagonizing gibberellin biosynthesis. Plant Science, v.309, 2021. https://doi.org/10.1016/j.plantsci.2021.110940
ZHAO, H.; LI, Q.; JIN, X.; LI, D.; ZHU, Z.; Li, Q.X. Chiral enantiomers of the plant growth regulator paclobutrazol selectively affect community structure and diversity of soil microorganisms, Science of The Total Environment, v.797, 2021. https://doi.org/10.1016/j.scitotenv.2021.148942
ZHAO, P.; ZHAO, J.; LEI, S.; GUO, X.; ZHAO, L. Simultaneous enantiomeric analysis of eight pesticides in soils and river sediments by chiral liquid chromatography-tandem mass spectrometry, Chemosphere, v.204, p.210-219 2018. https://doi.org/10.1016/j.chemosphere.2018.03.204
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2024 Ornamental Horticulture
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.