Methyl jasmonate foliar treatment on growth restriction and leaf anatomy of Begonia ‘Dragon Wing’

Authors

DOI:

https://doi.org/10.1590/2447-536X.v30.e242760

Keywords:

histology, jasmonates, plant growth regulator, potted plant

Abstract

The application of plant growth regulators, primarily gibberellin inhibitors, is the main approach used for controlling the growth of ornamental plants. However, there is a growing interest in alternative products due to the risk of environmental toxicity associated with traditional methods. Methyl jasmonate (MeJa) is a natural substance found in plants and is considered to have low toxicity when used appropriately. Its use as a growth regulator has shown promise for controlling plant growth, but its effects have not been extensively explored in ornamental growth restriction. This study investigated the effects of foliar application of different concentrations of MeJa (0, 50, 100, and 150 µM) on the growth and leaf anatomy of Begonia ‘Dragon Wing’ Pink and Red. Plant growth parameters were evaluated, and qualitative-quantitative histological analyses of Begonia leaves were conducted. MeJa was efficient in compacting the plants, reducing height in 17.57% and diameter in 8.98% without compromising biomass, root growth, and flowering aspects. The average concentration studied also caused changes in leaf anatomy, increasing the thickness of the abaxial epidermis, reducing mesophyll thickness, the number of calcium oxalate crystals, and the size and number of stomata. The results demonstrated the promising effect of MeJa on controlling the growth of potted ornamental plants.

Downloads

Download data is not yet available.

References

ALJASER, J.A.; ANDERSON, N.O. Effects of a gibberellin inhibitor on flowering, vegetative propagation, and production of rapid generation cycling Gladiolus for potted plant production. HortScience Horts, v.56, n.3, p.357-362, 2021. https://doi.org/10.21273/HORTSCI15535-20

ASLAM, S.; GUL, N.; MIR, M.A.; ASGHER, M.; AL-SULAMI, N.; ABULFARAJ, A.A.; QARI, S. Role of jasmonates, calcium, and glutathione in plants to combat abiotic stresses through precise signaling cascade. Frontiers in Plant Science, v.12, p.1-29, 2021. https://doi.org/10.3389/fpls.2021.668029

CHEN, C.; CHEN, H.; NI, M.; YU, F. Methyl jasmonate application and flowering stage affect scent emission of Styrax japonicus. Flavour and Fragrance Journal, v.36, n.4, p.497-504, 2021. https://doi.org/10.1002/ffj.3654

COLLADO, C.E.; HERNÁNDEZ, R. Effects of light intensity, spectral composition, and paclobutrazol on the morphology, physiology, and growth of Petunia, Geranium, Pansy, and Dianthus ornamental transplants. Journal of Plant Growth Regulation, v.41, p.461-478, 2022. https://doi.org/10.1007/s00344-021-10306-5

DAS, D.; BEGUM, M.; PAUL, P.; DUTTA, I.; MANDAL, S.; GHOSH, P.; GHOSH, S. Effects of plant growth retardant daminozide (Alar) on neuromuscular co-ordination behavior in Drosophila melanogaster. Journal of Toxicology and Environmental Health, Part A, v.85, n.22, p.921-936, 2022. https://doi.org/10.1080/15287394.2022.2114564

ĐURIĆ, M.; SUBOTIĆ, A.; PROKIĆ, L.; TRIFUNOVIĆ-MOMČILOV, M.; MILOŠEVIĆ, S. Foliar application of methyl jasmonate affects Impatiens walleriana growth and leaf physiology under drought stress. Plant Signaling and Behavior. v.18, n.1, 2023. https://doi.org/10.1080/15592324.2023.2219936

GULERIA, S.; KUMAR, M.; KHAN, A.; KAUSHIK, R. Plant hormones: physiological role and health effects. Journal of Microbiology, Biotechnology and Food Sciences, v.11, n.1, 2021. https://doi.org/10.15414/jmbfs.1147

HAN, X.; HU, Y.; ZHANG, G.; JIANG, Y.; CHEN, X.; YU, D. Jasmonate negatively regulates stomatal development in arabidopsis cotyledons. Plant Physiology, v.176, n.4, p. 2871-2885, 2018. https://doi.org/10.1104/pp.17.00444

HEIJARI, J.; NERG, A.-M.; KAINULAINEN, P.; VIIRI, H.; VUORINEN, M.; HOLOPAINEN, J.K. Application of methyl jasmonate reduces growth but increases chemical defence and resistance against Hylobius abietis in Scots pine seedlings. Entomologia Experimentalis et Applicata, v.115, p.117-124, 2005 https://doi.org/10.1111/j.1570-7458.2005.00263.x

HUYLENBROECK, J.V.; BHATTARAI, K. Ornamental plant breeding: entering a new era?. Ornamental Horticulture, v.28, n.3, p.297-305, 2022. https://doi.org/10.1590/2447-536X.v28i3.2516

KÄMPF, A.N. Produção Comercial De Plantas Ornamentais. Guaíba: Agropecuária, 2000. 245p.

KARIMI, M.; AHMADI, A.; HASHEMI, J.; ABBASI, A.; TAVARINI, S.; POMPEIANO, A.; GUGLIELMINETTI, L.; ANGELINI, L.G. Plant growth retardants (PGRs) affect growth and secondary metabolite biosynthesis in Stevia rebaudiana Bertoni under drought stress. South African Journal of Botany, v.121, p.394-401, 2019. https://doi.org/10.1016/j.sajb.2018.11.028

KARNOVSKY, MJ. A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. Journal of Cell Biology, v.27, p.137-138, 1965.

KOLUPAEV, Y.E.; YASTREBA, T.O. Jasmonate signaling and plant adaptation to abiotic stressors (Review). Applied Biochemistry and Microbiology, v.57, n.1, p.1-19, 2021. https://doi.org/10.1134/S0003683821010117

LI, C.; WANG, P.; MENZIES, N.W.; LOMBI, E.; KOPITTKE, P.M. Effects of methyl jasmonate on plant growth and leaf properties. Journal of Plant Nutrition and Soil Science, v.181, n.3, p.409-418, 2018. https://doi.org/10.1002/jpln.201700373

LIANG, S-X.; LI, H.; CHANG, Q.; BAI, R.; ZHAO, Z.; PANG, G-F. Residual levels and dietary exposure risk assessment of banned pesticides in fruits and vegetables from Chinese market based on long-term nontargeted screening by HPLC-Q-TOF/MS, Ecotoxicology and Environmental Safety, v.248, 2022. https://doi.org/10.1016/j.ecoenv.2022.114280

MACIEJEWSKA, B.; KOPCEWICZ, J. Inhibitory effect of methyl jasmonate on flowering and elongation growth in Pharbitis nil. Journal of Plant Growth Regulation, v.21, n.3, p.216-223, 2002. https://doi.org/10.1007/s003440010061

MARQUES, J.P.R.; NUEVO, L.G. Double-staining method to detect pectin in plant-fungus interaction. Journal of Visualized Experiments, e63432, 2022. https://doi.org/10.3791/63432

MOREIRA, X.; ZAS, R.; SAMPEDRO, L. Methyl Jasmonate as chemical elicitor of induced responses and anti-herbivory resistance in young conifer trees. In: MÉRILLON, J.M.; RAMAWAT, K.G. (Eds.). Plant Defence: Biological Control. Dordrecht: Springer, 2012. p. 345–362.

PAIVA, P.D.O.; REIS, M.V.; SANT’ANA, G.S.; BONIFÁCIO, F.L.; GUIMARÃES, P.H. Sales Flower and ornamental plant consumers profile and behavior. Ornamental Horticulture, v.26, n.3, p.333-345, 2020. https://doi.org/10.1590/2447-536X.v26i3.2158

PANDA, S.; JOZWIAK, A.; SONAWANE, P.D.; SZYMANSKI, J.; KAZACHKOVA, Y.; VAINER, A.; VASUKI KILAMBI, H.; ALMEKIAS-SIEGL, E.; DIKAYA, V.; BOCOBZA, S.; SHOHAT, H., MEIR, S.; WIZLER, G.; GIRI, A.P.; SCHUURINK, R.; WEISS, D.; YASUOR, H.; KAMBLE, A.; AHARONI, A. Steroidal alkaloids defence metabolism and plant growth are modulated by the joint action of gibberellin and jasmonate signalling. New Phytologist, v.233, p.1220-123, 2022. https://doi.org/10.1111/nph.17845

RIHN, A.L.; VELANDIA, M.; WAR NER, L.A.; FULCHER, A.; SCHEXNAYDER, S.; LEBUDE, A. Factors correlated with the propensity to use automation and mechanization by the US nursery industry. Agribusiness, v.39, p.110-130, 2023. https://doi.org/10.1002/agr.21763

SALACHNA, P.; ŁOPUSIEWICZ, Ł.; DYMEK, R.; MATZEN, A.; TROCHANOWICZ, K. Foliar application of gibberellic acid and methyl jasmonate improves leaf greenness in Hesperantha coccinea (syn. Schizostylis coccinea), a rare ornamental plant. Biology and Life Sciences Forum, v.4, n.97, 2021. https://doi.org/10.3390/IECPS2020-08622

SALACHNA, P.; MIKICIUK, M.; ZAWADZIŃSKA, A.; PIECHOCKI, R.; PTAK, P.; MIKICIUK, G.; PIETRAK, A.; ŁOPUSIEWICZ, Ł. Changes in growth and physiological parameters of ×Amarine following an exogenous application of gibberellic acid and methyl jasmonate. Agronomy, v.10, n.980, 2020. https://doi.org/10.3390/agronomy10070980

SAS INSTITUTE INC. 2013. SAS 9.4 Help and Documentation. Cary, NC: SAS Institute Inc.

SHI, X.; CHEN, S.; JIA, Z. The dwarfing effects of different plant growth retardants on Magnolia wufengensis L.Y. Ma et L. R. Wang. Forests, v.12, n.1, p.1-17, 2021. https://doi.org/10.3390/f12010019

SHIN, U.S.; LEE, J.S.; SONG, S.J.; SUH, G.U.; KIM, S.Y.; JEONG, M.J. The effects of plant growth regulators on the growth and flowering of potted Corydalis speciosa native to Korea. Acta Horticulturae, v.1291, p.139-144, 2020. https://doi.org/10.17660/ActaHortic.2020.1291.16

SILLMANN, T.A.; MATTIUZ, C.F.M.M. Growth inhibition of potted begonia via ethanol treatment. Ornamental Horticulture, v.30, e242675, 2024. https://doi.org/10.1590/2447-536X.v30.e242675

SILVA, L.M.; ALQUINI, Y.; CAVALLET, V.J. Inter-relações entre a anatomia vegetal e a produção vegetal. Acta Botanica Brasilica, v.19, n.1, p.183-194, 2005. https://doi.org/10.1590/S0102-33062005000100018

THAKUR, M.; KUMAR, R. Foliar application of plant growth regulators modulates the productivity and chemical profile of damask rose (Rosa damascena Mill.) under mid hill conditions of the western Himalaya. Industrial Crops and Products, v.158, 2020. https://doi.org/10.1016/j.indcrop.2020.113024

VOLK, G.M.; LYNCH-HOLM, V.J.; KOSTMAN, T.A.; GOSS, L.J.; FRANCESCHI, V.R. The role of druse and raphide calcium oxalate crystals in tissue calcium regulation in Pistia stratiotes leaves. Plant Biology, v.4, n.1, p.34-45, 2002. https://doi.org/10.1055/s-2002-20434

WANG, J.; SONG, L.; GONG, X.; XU, J.; LI, M. Functions of jasmonic acid in plant regulation and response to abiotic stress. International Journal of Molecular Sciences, v.21, n.4, p.1446, 2020. https://doi.org/10.3390/ijms21041446

ZHANG, W.; LUO, X.; ZHANG, A.; MA, C.; SUN, K.; ZHANG, T.; DAI, C. Jasmonate signaling restricts root soluble sugar accumulation and drives root-fungus symbiosis loss at flowering by antagonizing gibberellin biosynthesis. Plant Science, v.309, 2021. https://doi.org/10.1016/j.plantsci.2021.110940

ZHAO, H.; LI, Q.; JIN, X.; LI, D.; ZHU, Z.; Li, Q.X. Chiral enantiomers of the plant growth regulator paclobutrazol selectively affect community structure and diversity of soil microorganisms, Science of The Total Environment, v.797, 2021. https://doi.org/10.1016/j.scitotenv.2021.148942

ZHAO, P.; ZHAO, J.; LEI, S.; GUO, X.; ZHAO, L. Simultaneous enantiomeric analysis of eight pesticides in soils and river sediments by chiral liquid chromatography-tandem mass spectrometry, Chemosphere, v.204, p.210-219 2018. https://doi.org/10.1016/j.chemosphere.2018.03.204

Downloads

Published

2024-09-05

Issue

Section

Articles