Alterações cariotípicas, anormalidades meióticas e viabilidade polínica reduzida em citótipos triploides de Passiflora foetida (Passifloraceae) derivados de culturas de endosperma

Autores

DOI:

https://doi.org/10.1590/2447-536X.v31.e312797

Palavras-chave:

bandeamento cromossômico, comportamento meiótico, heterocromatina, maracujá ornamental, triploide

Resumo

A indução da poliploidia oferece a possibilidade de gerar novas variações na forma, cor, fragrância, forma, durabilidade, arquitetura da flor e a adaptabilidade em ambientes adversos. Considerando a importância de informações para a compreensão dos efeitos da triploidia na biologia reprodutiva de citótipo de Passiflora foetida o presente estudo teve como objetivo avaliar a estabilidade do genoma de plantas triploides de P. foetida regeneradas a partir de culturas de endosperma in vitro. Padrões de heterocromatina, comportamento de meiose e viabilidade polínica foram usados como parâmetros. A coloração diferencial dupla com fluorocromos DAPI/cromomicina (CMA3) revelou quatro cromossomos com uma banda CMA3+ em plantas diploides e seis cromossomos com uma banda CMA3+ em triploides de P. foetida. Como esperado, as plantas diploides apresentaram comportamento meiótico normal com aproximadamente 75% de pólen viável; enquanto os citótipos triplóides apresentaram comportamento anormal em ambas as divisões meióticas (primeira e segunda) e aproximadamente 70% de pólen inviável. A descrição dos cariótipos permite a identificação e seleção de materiais com características fenotípicas desejáveis, especialmente de plantas ornamentais que sofreram poliploidização.

Downloads

Não há dados estatísticos.

Referências

AFONSO, A.; LOUREIRO, J.; ARROYO, J.; VICENTE, E.O.; CASTRO, S. Cytogenetic diversity in the polyploid complex Linum suffruticosum s.l. (Linaceae). Botanical Journal of the Linnean Society, v.195, p.216- 232, 2021. https://doi.org/10.1093/botlinnean/boaa060

ALEXANDER, L. Ploidy level influences pollen tube growth and seed viability in interploidy crosses of Hydrangea macrophylla. Frontiers in Plant Science, v.11, p.100, 2020. https://doi.org/10.3389/fpls.2020.00100

ANTONIAZZI, C.A.; FARIA, R.B.; CARVALHO, P.P.; MIKOVSKI, A.I.; CARVALHO, I.F.; MATOS, E.M.; REIS, A.C.; VICCINI, L.F.; PAIM PINTO, D.L.; ROCHA, D.I.; OTONI, W.C.; SILVA, M.L. In vitro regeneration of triploid plants from mature endosperm culture of commercial passionfruit (Passiflora edulis Sims). Science Horticulture, Science Horticulture, v.238, p.408-415, 2018. https://doi.org/10.1016/j.scienta.2018.05.001

ASKURA, I.; HOSHINO, Y. Endosperm-derived triploid plant regeneration in diploid Actinidia kolomikta, a cold-hardy kiwifruit relative. Scientia Horticulturae, v.219, p.53-59, 2017. https://doi.org/10.1016/j.scienta.2017.02.045

BARTOLIĆ, P.; VOLTROVA A.; MACKOVA, L.; ŠRAMKOVA,G.; ŠLENKER, M.; MANDAKOVA, T.; PADILLA GARCIA, N.; MARHOLD, K.; KOLAŘ, F. Overcoming ploidy barriers: the role of triploid bridges in the genetic introgression of Cardamine amara. Molecular Ecology, v.0, e17702, 2025. https://doi.org/10.1111/mec.17702

BASIT, A.; LIM, K. Systematic approach of polyploidy as an evolutionary genetic and genomic phenomenon in horticultural crops. Plant Science, v.348, p.112236, 2024. https://doi.org/10.1016/j.plantsci.2024.112236

BEGNA, T. Polyploidy’s genetic effects in crop improvement: a review. Middle East Journal of Agriculture Research, v.13, p.137-147, 2024.

BLASIO, F.; PRIETO, P.; PRADILLO, M.; NARANJO, T. Genomic and meiotic changes accompanying polyploidization. Plants, v.11, n.1, p.125, 2022. https://doi.org/10.3390/plants11010125

CARVALHO, C.R.; SARAIVA, L.S. High-resolution HKG-banding in maize mitotic chromosomes. Journal of Plant Research, v.110, p.417- 420, 1997. https://doi.org/10.1007/bf02506801

COMAI, L. The advantages and disadvantages of being polyploid. Nature reviews. Genetics, v.6, p.836–846, 2005. https://doi.org/10.1038/nrg1711

CUI, L.; LIU, Z.; YIN, Y.; ZOU, Y.; FAIZAN, M.; ALAM, P.; YU, F. Research progress of chromosome doubling and 2n gametes of ornamental plants. Horticulturae, v.9, p.752, 2023. https://doi.org/10.3390/horticulturae9070752

FILIPPI, M.; BOLDRINI, K.R.; AGOSTINNHO, K.F.; CORRÊA, S.J.S.; DONAZOLLO, J. Estudo citogenético e viabilidade do pólen de Diatenopteryx sorbifolia Radlk. Ciência Florestal, v.32, n.1, p.233-246, 2022. https://doi.org/10.5902/1980509848072

FORRESTER, N.J.; REBOLLEDA-GÓMEZ, M.; SACHS, J.L.; ASHAMAN, T.L. Polyploid plants obtain greater fitness benefits from a nutrient acquisition mutualism. New Phytologist, v.227, p.944–954, 2020. https://doi.org/10.1111/nph.16574

HESLOP-HARRISON, J.; HESLOP-HARRISON, Y. Evaluation of pollen viability by enzymatically induced fluorescence: intracellular hydrolysis of fluorescein diacetate. Stain Technology, v.45, p.115-120, 1970. https://doi.org/10.3109/10520297009085351

IANNICELLI, J.; GUARINIELLO, J.; TOSSI, J.J.; REGALADO, L.; DI-CIANCCIO, L.; VAN-BAREN, C.M.; PITTA ALVAREZ, S.I.; ESCANDÓN, A.S. The “polyploid effect” in the breeding of aromatic and medicinal species. Scientia Horticulturae, v.260, p.108854, 2020. https://doi.org/10.1016/j.scienta.2019.108854

ISLAM, M.M.; DEEPO, D.M.; NASIF, S.O.; SIDDIQUE, A.B.; HASSAN, O.; PAUL, N.C. Cytogenetics and consequences of polyploidization on different biotic-abiotic stress tolerance and the potential mechanisms involved. Plants, v.11, p.2684, 2022. https://doi.org/10.3390/plants11202684

JIAO, Y.; WICKETT, N.; AYYAMPALAYAM, S.; CHANDERBALI, A.S.; LANDHERR, L.; RALPH, P.E.; TOMSHO, L.P.; HU, Y.; LIANG, H.; SOLTIS, P.S.; SOLTIS, D.E.; CLIFTON, S.W.; SCHARBAUM, S.E.; SCUSTER, S.C.; MA, H.; LEEBENS-MACK, J.; PAMPHILIS, C.W. Ancestral polyploidy in seed plants angiosperms. Nature, v.473, p.97- 100, 2011. https://doi.org/10.1038/nature09916

JOHRI, B.M.; NAG, K. Cytology and morphogenesis of embryo and endosperm tissues of Dendrophthoe and Taxillus. Cytology, v.39, p.801- 813, 1974. DOI: https://doi.org/10.1508/cytologia.39.801

JULIÃO, S.A.; RIBEIRO, C.V.; LOPES, J.M.L.; MATOS, E.M.; REIS, A.C.; PEIXOTO, P.H.P.; MACHADO, M.A.; AZEVEDO, A.L.S.; GRAZUL, R.M.; CAMPOS, J.M.S.; VICCINI, L.F. Induction of synthetic polyploids and assessment of genomic stability in Lippia alba. Frontiers in Plant Science, v.11, p.292, 2020. https://doi.org/10.3389/fpls.2020.00292

LA COUR, F. Acetic-orcein: a new stain-fixative for chromosomes. Biotechnic & Histochemistry, v.16, p.169-174, 1941.

LIQIN, G.; JIANGUO, Z.; XIAOXIA, L.; GUODONG, R. Polyploidy-related differential gene expression between diploid and synthesized allotriploid and allotetraploid hybrids of Populus. Molecular Breeding, v.39, p.69, 2019. https://doi.org/10.1007/s11032-019-0975-6

MACHADO, M.D.; SOUZA, C.S.; MACHADO, M.; REIS, A.C.; SOUSA, S.M.; MATOS, E.M.; VICCINI, L.F.; OTONI, W.C.; CARVALHO, I.F.; ROCHA, D.I.; SILVA, M.L. Novel avenues for passion fruit in vitro regeneration from endosperm culture, and morpho- agronomic and physiological traits of triploid Passiflora cincinnata Mast. emblings. Plant Cell Tissue Organ Culture, v.150, p.637-650, 2022. https://doi.org/10.1007/s11240-022-02318-0

MIKOVSKI, A.I.; SILVA, N.T.; SILVA, L.A.S.; MACHADO, M.; BARBOSA, L.C.S.; REIS, A.C.; MATOS, E.M.; VICCINI, L.F.; SOUZA, C.S.; MACHADO, M.D.; OOTONI, W.C.; CARVALHO, I.F.; ROCHA, D.I.; SILVA, M.L. From endosperm to triploid plants: a stepwise characterization of the de novo shoot organogenesis and morpho- agronomic aspects of an ornamental passion fruit (Passiflora foetida L.). Plant Cell Tissue Organ Culture, v.147, p.239-253, 2021. https://doi.org/10.1007/s11240-021-02120-4

MOHAMED, M.E.; HICKS, R.G.T.; BLAKESLEY, D. Shoot regeneration from mature endosperm of Passiflora foetida. Plant Cell Tissue Organ Culture, v.46, p.161-164, 1996. DOI: https://doi.org/10.1007/BF00034851

MURASHIGE, T.; SKOOG, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, v.15, p.473–497, 1962. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

NIAZIAN, M.; NALOUSI, A.M. Artificial polyploidy induction for improvement of ornamental and medicinal plants. Plant Cell Tissue Organ Culture, v.142, p.447-469, 2020. https://doi.org/10.1007/s11240-020-01888-1

OTONI, W.C.; SOARES, J.R.; SOUZA, C.S.; SILVA, L.A.S.S.; DIAS, L.L.L.; ROBLEDO, K.J.M.; PAIM-PINTO, D.L.; KOEHLER, A.D.; SODRZEIESKI, P.A.; FERNANDES, A.M.; VIEIRA, L.M.; SILVA, P.O.; SILVEIRA, E.C.; MATOS, E.M.; CARVALHO, I.F.; ROMANEL, E.; BATISTA, D.S.; VICCINI, L.F.; FALEIRO, F.G.; ROCHA, D.I.; NOGUEIRA, F.T.S.; SILVA, M.L.C. Advances in Tissue Culture and Transformation Studies in Non-model Species: Passiflora spp. (Passifloraceae). In: LOYOLA-VARGAS, V.; OCHOA-ALEJO, N. (eds). Plant Cell Protocols. Methods in Molecular Biology, v. 2827,. New York: Humana, 2024. pp.207-222.

SCHWEIZER, D. Reverse fluorescent chromosome-banding with chromomycin A and DAPI. Chromosoma, v.58re, p.307-324, 1976. https://doi.org/10.1007/BF00292840

SILVA, M.L.; PINTO, D.L.P.; CAMPOS, J.M.S.; CARVALHO, I.F.; ROCHA, D.I.; BATISTA, D.S.; OTONI, W.C. Repetitive somatic embryogenesis from wild passion fruit (Passiflora cincinnata Mast.) anthers. Plant Cell Tissue Organ Culture, v.146, p.635-641, 2021. https://doi.org/10.1007/s11240-021-02083-6

SILVA, N.T.; FARIA, R.B.; CREPALDI, G.B.; Crepaldi, G.B.; Paim-Pinto, D.L.; Viccini, L.F.; de Matos, E.M.; da Silva, M.L. Karyotype characterization of endosperm-derived plants of Passiflora cristalina Vanderplank and Zappi, a wild amazonian passionfruit species. Plant Cell Tissue Organ Culture, v.156, 102, 2024. https://doi.org/10.1007/s11240-024-02714-8

SILVA, N.T.; SILVA, L.A.S.; REIS, A.C.; MACHADO, M.D.; MATOS, E.M.; VICCINI, L.F.; OTONI, W.C.; CARVALHO, I.F.; ROCHA, D.I.; SILVA, M.L. Endosperm culture: a facile and efficient biotechnological tool to generate passion fruit (Passiflora cincinnata Mast.) triploid plants. Plant Cell Tissue Organ Culture. v.142, p.613-624, 2020. https://doi.org/10.1007/s11240-020-01887-2

SOARES, N.R.; MOLLINARI, M.; OLIVEIRA, G.K.; PEREIRA, G.S.; VIEIRA, M.L.C. Meiosis in polyploids and implications for genetic mapping: a review. Genes, v.12, p.1517, 2021. https://doi.org/10.3390/genes12101517

SOLTIS, P.S.; SOLTIS, D.E. Polyploidy and Genome Evolution. New York: Springer, 2014. 420p.

STEBBINS, G.L. Chromosomal evolution in higher plants. In: G. Ledyard Stebbins (eds.) London: Edward Arnold Ltd., 1971.

SVAČINA, R.; KARAFIÁTOVÁ, M.; MALUROVÁ, M.; SERRA, H.; VITEK, D.; ENDO, T.R.; SOURDILLE, P.; BARTOS, J. Development of deletion lines for chromosome 3D of bread wheat. Frontiers in Plant Science, v.10, 2019. https://doi.org/10.3389/fpls.2019.01756

THOMAS, T.D.; CHATURVEDI, R. Endosperm culture: a novel method for triploid plant production. Plant Cell Tissue and Organ Culture, v.93, p.1-14, 2008. https://doi.org/10.1007/s11240-008-9336-6

TOUCHELL, D.H.; PALMER, I.E., RANNEY, T.G. In vitro ploidy manipulation for crop improvement. Frontiers in Plant Science, v.11, p.722, 2020. https://doi.org/10.3389/fpls.2020.00722

WANG, X.; CHENG, Z.M.; ZHI, S.; XU, F. Breeding Triploid Plants: A Review. Czech Journal of Genetics and Plant Breeding, v.52, p.41-54, 2016. https://doi.org/10.17221/151/2015-CJGPB

Downloads

Publicado

2025-04-17

Edição

Seção

Artigos