Cerium (Ce) supply during the tulip production improves postharvest quality parameters

Authors

DOI:

https://doi.org/10.1590/2447-536X.v31.e312937

Keywords:

cut flowers, inorganic biostimulation, nutritional content, Tulipa gesneriana

Abstract

Tulip (Tulipa gesneriana L.) is an ornamental species highly appreciated in international markets; however, it poses challenges at both the production and postharvest stages, which reduce the duration and quality of vase life. Inorganic biostimulation offers a viable alternative to face these constraints. This study aimed to evaluate the effect of Ce supplied in the irrigation nutrient solution during the production cycle on the postharvest quality and nutritional status of tulips cv. Jan van Nes. The Ce concentrations used were 0, 5, 15, and 25 µM. For the evaluation of post-harvest quality, flower stems of tulips were used, harvested at 49 days after sowing (DAS). Plants treated with 25 µM Ce exhibited significantly greater flower bud length throughout vase life, while the effect of 5 µM Ce was significant only from day 2 onwards. Regarding flower bud diameter, only the 25 µM Ce treatment outperformed the rest of the treatments evaluated, and this effect was observed exclusively on day 6 of vase life. In addition, they showed an increase in the contents of macronutrients, some micronutrients, and total soluble sugars in the flower. Although Ce did not increase vase life, and a dose of 25 µM caused excessive stem elongation (an undesirable condition in postharvest), it did improve other quality indicators. Thus, Ce can be used as a novel inorganic biostimulant to improve postharvest quality in tulips.

Downloads

Download data is not yet available.

References

AGATHOKLEOUS, E.; ZHOU, B.; GENG, C.; XU, J.; SAITANIS, C.J.; FENG, Z.; TACK, F.M.G.; RINKLEBE, J. Mechanisms of cerium-induced stress in plants: A meta-analysis. Science of the Total Environment, v.852, n.158352, 2022. https://doi.org/10.1016/j.scitotenv.2022.158352

AHMAD, S.; SEHRISH, A.K.; AI, F.; ZONG, X.; ALOMRANI, S.O.; AL-GHANIM, K.A.; ALSHEHRI, M.I.; ALI, S.; GUO, H. Morphophysiological, biochemical, and nutrient response of spinach (Spinacia oleracea L.) by foliar CeO₂ nanoparticles under elevated CO₂. Scientific Reports, v.14, n.25361, 2024. https://doi.org/10.1038/s41598-024-76875-z

ALKAÇ, O.S.; GÜNEŞ, M. Fertilization and compost effects on nutrient content and growth in cut tulip cultivation. Journal of Agricultural Faculty of Gaziosmanpasa University, v.41, n.3, p.209-217, 2024. https://doi.org/10.55507/gopzfd.1576758

BENSCHOP, M.; DEHERTOGH, A.A. Post-harvest development of cut tulip flowers. Acta Horticulturae, v.23, p.121-126, 1971. https://doi.org/10.17660/ActaHortic.1971.23.18

BILIAS, F.; KARAGIANNI, A.G.; IPSILANTIS, I.; SAMARTZA, I.; KRIGAS, N.; TSOKTOURIDIS, G.; MATSI, T. Adaptability of wild-growing tulips of Greece: Uncovering relationships between soil properties, rhizosphere fungal morphotypes and nutrient content profiles. Biology, v.12, n.4, 605, 2023. https://doi.org/10.3390/biology12040605

BKD (Flower Bulb Inspection Service). Provisional spring flowering statistics 2023–2024 Netherlands. 2023. Disponível em: https://www.bkd.eu/onze-dienstverlening/voorlopige-statistieken/. Acessado em: 23 jan. 2025.

COSTA, L.C. da; DE ARAUJO, F.F.; RIBEIRO, W.S.; SANTOS, M.N.S.; FINGER, F.L. Postharvest physiology of cut flowers. Ornamental Horticulture, v.27, n.3, p.374-385, 2021. https://doi.org/10.1590/2447-536X.v27i3.2372

DRIDI, N.; FERREIRA, R.; BOUSLIMI, H.; BRITO, P.; MARTINS-DIAS, S.; CAÇADOR, I.; SLEIMI, N. Assessment of tolerance to lanthanum and cerium in Helianthus annuus plant: Effect on growth, mineral nutrition, and secondary metabolism. Plants, v.11, n.7, e988, 2022. https://doi.org/10.3390/plants11070988

FENG, Y.; WANG, C.; CHEN, F.; CAO, X.; WANG, J.; YUE, L.; WANG, Z. Cerium oxide nanomaterials improve cucumber flowering, fruit yield and quality: the rhizosphere effect. Environmental Science: Nano, v.2023, n.8, p.2010–2021, 2023. https://doi.org/10.1039/d3en00213f

GÓMEZ-MERINO, F.C.; CASTILLO-GONZÁLEZ, A.M.; RAMÍREZ-MARTÍNEZ, M.; TREJO-TÉLLEZ, L.I. Lanthanum delays senescence and improves postharvest quality in cut tulip (Tulipa gesneriana L.) flowers. Scientific Reports, v.10, n.19437, 2020a. https://doi.org/10.1038/s41598-020-76266-0

GÓMEZ-MERINO, F.C.; RAMÍREZ-MARTÍNEZ, M.; CASTILLO-GONZÁLEZ, A.M.; TREJO-TÉLLEZ, L.I. Lanthanum prolongs vase life of cut tulip flowers by increasing water consumption and concentrations of sugars, proteins and chlorophylls. Scientific Reports, v.10, n.4209, 2020b. https://doi.org/10.1038/s41598-020-61200-1

GÓMEZ-NAVOR, T.; GÓMEZ-MERINO, F.C.; ALCÁNTAR-GONZÁLEZ, G.; FERNÁNDEZ-PAVÍA, Y.L.; TREJO-TÉLLEZ, L.I. Cerium (Ce) affects the phenological cycle and the quality of tulip (Tulipa gesneriana L.). Agro Productividad, v.14, n.4, p.59-63, 2021. https://doi.org/10.32854/agrop.v14i4.1981

HAWKESFORD, M.J.; CAKMAK, I.; COSKUN, D.; DE KOK, L.J.; LAMBERS, H.; SCHJOERRING, J.K.; WHITE, P.J. Functions of macronutrients. In: RENGEL, Z.; CAKMAK, I.; WHITE, P. (eds) Marschner’s mineral nutrition of plants. Amsterdam: Elsevier, 2023. p.201-281.

HU, X.; DING, Z.; CHEN, Y.; WANG, X.; DAI, L. Bioaccumulation of lanthanum and cerium and their effects on the growth of wheat (Triticum aestivum L.) seedlings. Chemosphere, v.48, n.6, p.621-629, 2002. https://doi.org/10.1016/s0045-6535(02)00109-1

INKHAM, C.; WICHAPENG, W.; PANJAMA, K.; RUAMRUNGSRI, S. Exploring the role of calcium in the physiology of Tulipa: A comparative study across different cultivars. Horticulturae, v.10, n.1, e13, 2023. https://doi.org/10.3390/horticulturae10010013

JAHNKE, N.J.; KALINOWSKI, J.; DOLE, J.M. Postharvest handling techniques for long-term storage of cut tulip and Dutch iris. HortTechnology, v.32, n.3, p.263-274, 2022. https://doi.org/10.21273/HORTTECH05010-21

KANEEDA, R.; KANNO, Y.; SEO, M.; HARDIE, K.; HANDA, T. Inhibition of malformed incurved flowers in the cut rose cultivar ‘Yves Piaget’ by methyl jasmonate spray treatment of flower buds before harvest. The Horticulture Journal, v.93, n.3, p.216-223, 2024. https://doi.org/10.2503/hortj.QH-119

LI, X.; FAN, Y.; MA, J.; GAO, X.; WANG, G.; WU, S.; LIU, Y.; YANG, K.; XU, E.; PU, S.; LUO, A. Cerium improves the physiology and medicinal components of Dendrobium nobile Lindl. under copper stress. Journal of Plant Physiology, v.280, e153896, 2023. https://doi.org/10.1016/j.jplph.2022.153896

LIU, Z.; LUO, Y.; LIAO, W. Postharvest physiology of fresh-cut flowers. In: ZIOGAS, V.; CORPAS, F.J. (eds) Oxygen, Nitrogen and Sulfur Species in Post-Harvest Physiology of Horticultural Crops. London, UK: Academic Press, 2024. p.23-42. https://doi.org/10.1016/B978-0-323-91798-8.00008-4

LYKAS, C.; ZOGRAFOU, M.; SAMARTZA, I.; SAKELLARIOU, M.A.; PAPAKONSTANTINOU, S.; VALANAS, E.; PLASTIRAS, I.; KARAPATZAK, E.; KRIGAS, N.; TSOKTOURIDIS, G. Vase life evaluation of three Greek tulip species compared with a commercial cultivar. Horticulturae, v.9, n.8, e928, 2023. https://doi.org/10.3390/horticulturae9080928

MDF (Market Data Forecast). 2025. Global Tulip Market Size, Share, Trends & Growth Forecast Report Segmented by Type (Fresh, Dry), Application, Distribution Channel, and Region (North America, Europe, APAC, Latin America, Middle East and Africa). Disponível em: https://www.marketdataforecast.com/market-reports/tulip-market. Acesso em: 27 jan. 2025.

PAIVA, D.C.; RODDY, A.B. Flower longevity and size are coordinated with ecophysiological traits in a tropical montane ecosystem. New Phytologist, v.244, n.2, p.344-350, 2024. https://doi.org/10.1111/nph.20027.

PIETRZAK, M.; SKIBA, E.; WOLF, W.M. Root-applied cerium oxide nanoparticles and their specific effects on plants: A Review. International Journal of Molecular Science, v.25, 4018, 2024. https://doi.org/10.3390/ijms25074018.

POURZARNEGAR, F.; HASHEMABADI, D. The effect of cerium nitrate and salicylic acid on vase life and antioxidant system of cut lisianthus (Eustoma grandiflorum cv. Pink Picotte) flowers. Journal of Ornamental Plants, v.10, n.2, p.69-80, 2020. Disponível em: https://journals.iau.ir/article_672950_84a2cfc584db086b8564c62653245e67.pdf.

POURZARNEGAR, F.; HASHEMABADI, D.; KAVIANI, B. Cerium nitrate and salicylic acid on vase life, lipid peroxidation, and antioxidant enzymes activity in cut lisianthus flowers. Ornamental Horticulture, v.26, n.4, p.658-669, 2020. https://doi.org/10.1590/2447-536X.v26i4.2227.

PRAKASH, V.; PERALTA-VIDEA, J.; TRIPATHI, D.K.; MA, X.; SHARMA, S. Recent insights into the impact, fate and transport of cerium oxide nanoparticles in the plant-soil continuum. Ecotoxicology and Environmental Safety, v.221, n.112403, 2021. https://doi.org/10.1016/j.ecoenv.2021.112403.

RUEDA-LÓPEZ, I.; GÓMEZ-MERINO, F.C.; PERALTA SÁNCHEZ, M.G.; TREJO-TÉLLEZ, L.I. Neodymium exerts biostimulant and synergistic effects on the nutrition and biofortification of lettuce with zinc. Horticulturae, v.11, 776, 2025. https://doi.org/10.3390/horticulturae11070776.

SUBBARAMAMMA, P.; BHASKAR, V.V. Role of beneficial elements in post-harvest vase life of cut flowers. The Pharma Innovation Journal, v.12, n.3, p.1242-1250, 2023.

TREJO-TÉLLEZ, L.I.; GÓMEZ-MERINO, F.C. Beneficial elements: Novel players in plant biology for innovative crop production, volume II. Frontiers in Plant Science, v.14, n.e1303462, 2023. https://doi.org/10.3389/fpls.2023.1303462.

TREJO-TÉLLEZ, L.I.; GÓMEZ TREJO, L.F.; GÓMEZ MERINO, F.C. Biostimulant effects and concentration patterns of beneficial elements in plants. In: PANDEY, S.; TRIPATHI, K.D.; SINGH, V.P.; SHARMA, S.; CHAUHAN, C.K. (eds). Beneficial Chemical Elements of Plants: Recent Developments and Future Prospects. New York: John Wiley & Sons Ltd, 2023. p.58-102. https://doi.org/10.1002/9781119691419.ch4.

VAN DOORN, W.; PERIK, R. Composition for the treatment of cut tulip flowers. European Patent EP 0 993 776 A1, 1999. Disponível em: https://patents.google.com/patent/EP0993776A1/en. Acesso em: 13 jan. 2025.

VAN DOORN, W.G.; PERIK, R.R.; ABADIE, P.; HARKEMA, H. A treatment to improve the vase life of cut tulips: Effects on tepal senescence, tepal abscission, leaf yellowing and stem elongation. Postharvest Biology and Technology, v.61, n.1, p.56-63, 2011. https://doi.org/10.1016/j.postharvbio.2011.02.003.

VERDONK, J.C.; VAN LEPEREN, W.; CARVALHO, D.R.A.; VAN GEEST, G.; SCHOUTEN, R.E. Effect of preharvest conditions on cut-flower quality. Frontiers in Plant Science, v.14, e1281456, 2023. https://doi.org/10.3389/fpls.2023.1281456.

VERMA, J.; SINGH, P. Post-harvest handling and senescence in flower crops: An overview. Agricultural Reviews, v.42, n.2, p.145-155, 2021. https://doi.org/10.18805/ag.R-1992.

ZHANG, F.P.; ZHANG, S.B. Floral longevity is related to flower nutrient stoichiometry in endangered orchids, Paphiopedilum species. Global Ecology and Conservation, v.47, n.e02663, 2023. https://doi.org/10.1016/j.gecco.2023.e02663.

ZHANG, C.; ZHANG, X.; SHAN, C. Effect of praseodymium on the postharvest quality of Lilium longiflorum cut flowers. New Zealand Journal of Crop and Horticultural Science, v.51, n.4, p.683-693, 2022. https://doi.org/10.1080/01140671.2022.2068619.

ZHAO, X.; ZHANG, X.; GAO, S.; SHAN, C. Cerium improves plant growth and fruit quality of strawberry plants under salt stress by changing the antioxidant capacity and water physiology. Plant, Soil and Environment, v.68, n.11, p.499-509, 2022.

Downloads

Published

2025-10-03

Issue

Section

Articles