Morphological and SRAP-based genetic diversity analysis of Zinnia elegans Jacq. accessions
DOI:
https://doi.org/10.1590/2447-536X.v31.e312949Keywords:
molecular marker, ornamental plant, phylogeny, variability, accessionAbstract
Zinnia elegans Jacq. is ornamental plant commonly cultivated in Indonesia. This species has various flower shapes and colors and is easy to be cultivated in any environmental conditions. This study aimed to determine the genetic diversity of 18 Z. elegans accessions based on morphological and SRAP molecular markers. The research was arranged a completely randomized design (CRD) with 18 accessions as treatments and three replications within each treatment. SRAP analysis was performed using five primer combinations of C1 (Me6-Em6), C2 (Me8-Em4), C3 (Me8-Em7), C4 (Me9-Em4), and C5 (Me10-Em4). Meanwhile, Z. elegans descriptor from UPOV was used in morphological analysis for quantitative and qualitative traits. The result showed a dendrogram with two main branches of group A and B for morphological traits and SRAP markers with a similarity coefficient of 0.18- 0.78 and 0.46-0.80, respectively. SRAP markers significantly correlated with six morphological traits, such as ray floret apex (RFA), ray floret length (RFL), leaf length (LL), leaf width (LW), stem length (SL), and ray floret width (RFW). Five morphological traits that had high GCV and strong SRAP correlation were prioritized for selection. Five SRAP combination primers can be used for molecular marker resources of Zinnia breeding.
Downloads
References
ABD EL-FATAH, B.; NAFEA, D. Genetic relationships and diversity among pea (Pisum sativum L.) genotypes assessed using agro- morphological and molecular markers. Journal of Agricultural Chemistry and Biotechnology, v.11, n.12, p.353-363, 2020. https://doi.org/10.21608/jacb.2020.137305
ABDOLINASAB, M.; RAHIMI, M. Association analysis of traits in watermelon genotypes using molecular markers. Iranian Journal of Science and Technology, Transaction A: Science, v.44, p.361-369, 2020. https://doi.org/10.1007/s40995-020-00837-z
AMIRYOUSEFI, A.; HYVÖNEN, J.; POCZAI, P. iMEC: Online marker efficiency calculator. Applications in Plant Sciences, v.6, n.6, p.1-4, 2018. https://doi.org/10.1002/aps3.1159
ANNEPU, S.K.; SHARMA, H.D.; BARH, A.; DOGRA, R.; SHARMA, V.; THAKUR, S.; VERMA, V.; SHARMA, K. Performance prediction of F1 crosses in eggplant (Solanum melongena L.) based on morphological and molecular divergence. Genetika, v.55, n.1, p.45-60, 2023. https://doi.org/10.2298/GENSR2301045A
BIDYANANDA, N.; JAMIR, I.; NOWAKOWSKA, K.; VARTE, V.; VENDRAME, W.A.; DEVI, R.S.; NONGDAM, P. Plant genetic diversity studies: insights from DNA marker analyses. International Journal of Plant Biology, v.15, p.607-640, 2024. https://doi.org/10.3390/ijpb15030046
CHESNOKOV, Y.V.; ARTEMYEVA, A.M. Evaluation of the measure of polymorphism information of genetic diversity. Agricultural Biology, v.50, n.5, p.571-578, 2015. https://doi.org/10.15389/agrobiology.2015.5.571eng
CORNEA-CIPCIGAN, M.; PAMFIL, D.; SISEA, C.R.; MARGAOAN, R. Characterization of Cyclamen genotypes using morphological descriptors and DNA molecular markers in a multivariate analysis. Frontiers in Plant Science, v.14, p.1-15, 2023. https://doi.org/10.3389/fpls.2023.1100099
DARKWA, K.; AGRE, P.; OLASANMI, B.; ISEKI, K.; MATSUMOTO, R.; POWELL, A.; BAUCHET, G.; DE KOEYER, D.; MURANAKA, S.; ADEBOLA, P.; ASIEDU, R.; TERAUCHI, R.; ASFAW, A. Comparative assessment of genetic diversity matrices and clustering methods in white Guinea yam (Dioscorea rotundata) based on morphological and molecular markers. Scientific Reports, v.10, p.1-14, 2020. https://doi.org/10.1038/s41598-020-69925-9
DESHMUKH, S.N.; BASU, M.S.; REDDY, P.S. Genetic variability, character association and path coefficient analysis of quantitative traits in Virginia bunch varieties of groundnut. Indian Journal of Agricultural Science, v.56, p.515-518, 1986.
DOYLE, J.J.; DOYLE, J.L. Isolation of Plant DNA from fresh tissue. Focus, v.12, n.1, p.13–15, 1990.
FU, X.P.; NING, G.G.; GAO, L.P.; BAO, M.Z. Genetic diversity of Dianthus accessions as assessed using two molecular marker systems (SRAPs and ISSRs) and morphological traits. Scientia Horticulturae, v.117, n.3, p.263-270, 2008. https://doi.org/10.1016/j.scienta.2008.04.001
GOLKAR, P.; NOURBAKHSH, V. Analysis of genetic diversity and population structure in Nigella sativa L. using agronomic traits and molecular markers (SRAP and SCoT). Industrial Crops and Products, v.130, p.170-178, 2019. https://doi.org/10.1016/j.indcrop.2018.12.074
HARRIS, A.M.; DEGIORGIO, M. An unbiased estimator of gene diversity with improved variance for samples containing related and inbred individuals of any ploidy. G3: Genes, Genomes, Genetics, v.7, p.671-691, 2017. https://doi.org/10.1534/g3.116.037168
HASSANI, S.M.R.; TALEBI, R.; POURDAD, S.S.; NAJI, A.M.; FAYAZ, F. Morphological description, genetic diversity and population structure of safflower (Carthamus tinctorius L.) mini core collection using SRAP and SSR markers. Biotechnology and Biotechnological Equipment, v.34, n.1, p.1043-1055, 2020. https://doi.org/10.1080/13102818.2020.1818620
HODAEI, M.; RAHIMMALEK, M.; ARZANI, A. Genetic diversity of Iranian Chrysanthemum morifolium cultivars using morphological traits and sequence-related amplified polymorphism (SRAP) markers. Horticulture Environment and Biotechnology, v.60, p.753-765, 2019. https://doi.org/10.1007/s13580-019-00137-5
JADHAV, P.R.; JAGTAP, A.Y.; GADGE, A.D.; SOLANKE, A.U.; PAGARIYA, M.C.; KADAM, G.B.; PRASAD, K.V.; KAWAR, P.G. Agromorphological characterization and SRAP-based genetic diversity analysis of Gladiolus hybridus L. cultivars. Genetic Resources Crop Evolution, p.1-23, 2025. https://doi.org/10.1007/s10722-024-02309-4
KHALED, A.G.A.; ELAMEEN, T.M.; AHMED, A.Y.M.; MOHIY, M.; ELSHAZLY, I.F.O. SRAP molecular markers linked to three morphological traits in Egyptian Bread Wheat (Triticum aestivum L.). SVU-International Journal of Agricultural Sciences, v.3, n.3, p.145-158, 2021. https://doi.org/10.21608/svuijas.2021.78975.1113
LI, G.; QUIROS, C.F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: Its application to mapping and gene tagging in Brassica. Theoretical and Applied Genetics, v.103, n.2, p.455-461, 2001. https://doi.org/10.1007/s001220100570
LIU, C.; HE, Y.; GOU, T.; LI, X.; NING, G.; BAO, M. Identification of molecular markers associated with the double flower trait in Petunia hybrida. Scientia Horticulturae, v.206, p.43-50, 2016. https://doi.org/10.1016/j.scienta.2016.04.032
MARETTA, D.; SOBIR; HELIANTI, I.; PURWONO; SANTOSA, E. Genetic diversity in eddoe taro (Colocasia esculenta var. antiquorum) from Indonesia based on morphological and nutritional characteristics. Biodiversitas, v.21, n.8, p.3525-3533, 2020. https://doi.org/10.13057/biodiv/d210814
MARTINS, R.D.C.F.; PÊGO, R.G.; DA CRUZ, E.S.; ABREU, J.F.G.; DE CARVALHO, D.F. Production and quality of zinnia under different growing seasons and irrigation levels. Ciencia e Agrotecnologia, v.45, p.1-13, 2021. https://doi.org/10.1590/1413-7054202145033720
MAULANI, R.; MURTI, R.H.; PURWANTORO, A. Molecular diversity in populations of Chili (Capsicum annuum L.). Sabrao Journal of Breeding and Genetics, v.55, n.1, p.15-24, 2023. https://doi.org/10.54910/sabrao2023.55.1.2
NAKKUNTOD, M.; LUANGLUE, S. Genetic diversity of Nelumbo nucifera Gaertn. cultivars using DNA markers and morphological traits. Chiang Mai Journal of Science, v.51, n.6, p.1-16, 2024. https://doi.org/10.12982/CMJS.2024.087
PONGOH, J.; PAAT, F.J.; SOPUTAN, R. The diversity of several flower color types of the zinnia plant (Zinnia elegans Jacq.). Jurnal Agroekoteknologi Terapan (Applied Agroecotechnology Journal), v.3, n.1, p.108-115, 2022. https://doi.org/10.35791/jat.v3i1.41110
SHARAF-ELDIEN, M.; EL-BABLY, S.; MAGOUZ, M. Effect of pinching and spraying of paclobutrazol on vegetative growth, flowering and chemical composition of Zinnia elegans Jacq. Journal of Plant Production, v.8, n.5, p.587-592, 2017. https://doi.org/10.21608/jpp.2017.40474
SINGH, A.; DIKSHIT, H.K.; JAIN, N.; SINGH, D.; YADAV, R.N. Efficiency of SSR, ISSR and RAPD markers in molecular characterization of mungbean and other vigna species. Indian Journal of Biotechnology, v.13, n.1, p.81-88, 2014.
SLEPER, D.A.; POEHLMAN, J.M. Breeding Field Crop (5th ed.). Oxford: Blackwell Publishing, 2006. 432p.
SONG, C.; LIU, X.; XU, M.; YING, M.; FU, J.; ZHANG, C. Germplasm resource and genetic breeding of Zinnia: a review. Ornamental Plant Research, v.5, p.1-10, 2025. https://doi.org/10.48130/opr-0025-0014
SYUKUR, M.; SUJIPRIHATI, S.; YUNIANTI, R. Teknik Pemuliaan Tanaman (2nd ed.). Indonesia: Penebar Swadaya, 2015. 354p.
TOSCANO, S.; ROMANO, D. Morphological, physiological, and biochemical responses of zinnia to drought stress. Horticulturae, v.7, v.362, p.1-17, 2021. https://doi.org/10.3390/horticulturae7100362
UPOV. Zinnia: Guidelines for the conduct of tests for distinctness, uniformity and stability, 2022. Available at: http://www.Upov.Int/Edocs/Upov Accessed on: August 18th 2024.
WU, F.; CHEN, J.; WANG, J.; WANG, X.; LU, Y.; NING, Y.; LI, Y. Intra-population genetic diversity of Buchloe dactyloides (Nutt.) Engelm (buffalograss) determined using morphological traits and sequence-related amplified polymorphism markers. 3 Biotech, v.9, n.97, p.1-8, 2019. https://doi.org/10.1007/s13205-019-1632-9
ZHANG, Z.; YANG, Q.; NIU, Y.; ZHANG, Y.; DONG, S.; ZHANG, W.; WANG, Z. Diversity analysis and establishment of core collection among Akebia trifoliata (Thunb.) Koidz. in Qinba mountain area of China using ISSR and SRAP markers. Genetic Resources and Crop Evolution, v.68, p.1085-1102, 2021. https://doi.org/10.1007/s10722-020-01051-x
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Miranda Ferwita Sari, Aziz Purwantoro, Yekti Asih Purwestri, Endang Sulistyaningsih

This work is licensed under a Creative Commons Attribution 4.0 International License.



