Biopriming of Begonia seedlings with endophytic fungal isolates Beauveria bassiana led to significant increase in growth characteristic
DOI:
https://doi.org/10.1590/2447-536X.v31.e312976Keywords:
Begonia rex, easy post-transplantation, entomopathogenic fungi (EPF), fungal colonizationAbstract
The ornamental species Begonia rex has a high commercial demand in the flower industry, including plant tissue culture techniques. To develop this approach for mass production of begonia, the disadvantages of post-transplant stress need to be mitigated. For this purpose, the effect of inoculation with entomopathogenic endophyte Beauveria bassiana conidia in B. rex seedlings obtained from in vitro culture was investigated. Throughout the course of the experiment, treated specimens exhibited a consistently high level of fungal invasion, with colonization rates ranging from 60 % to 80 %. During this study, seedlings were not fertilized at any stage so as not to disturb the mutualistic plant–fungus relationship. Inoculated by the “substrate treatment” method, B. bassiana had positive effects on root and leaves area of seedlings: total leaf blade area increased by 50%, while the root system increased threefold. B. bassiana also promoted water-holding root capacity of B. rex seedlings. Under transplantation stress conditions, the fresh weight and relative water content of in vitro produced begonia plants increased significantly (2-2.5-fold) after colonization with B. bassiana. It can be assumed that under conditions of nutrient deficiency, the fungus, which promotes both the transport and absorption of nutrients, can also enhance the growth of begonia seedlings by changing the level of phytohormones. Thus, it was found that inoculation with B. bassiana, which helps B. rex to tolerate water and nutrient deficiency during ex vitro transplantation, could be beneficial for the production of high-quality begonia plants.
Downloads
References
ASWATHY, J.M.; MURUGAN, K. In vitro multiplication of Begonia rex-cultorum ‘Baby rainbow’ and extraction of anthocyanin from callus. Trends in Biosciences, v.10, n.20, р.3884-3892, 2017.
BASHILOV A. Screening of biochemical composition and integral antiradical activity of begoniaceae representatives. Proceedings of Polesie State University. Series of Natural Sciences, v.1, р.3-10, 2021.
BORAH, D.; DUTTA, R.; MAJUMDAR, S.; MILI, С. Begonia species: a review on its ethnobotany, phytochemicals, and biological activities. Discover Plants, v.2, p.182, 2025. Publicis online. https://doi.org/10.1007/s44372-025-00272-7
CHEN, Z.; JIN, Y.; YAO, X.; CHEN, T.; WEI, X.; LI, C.; WHITE, J.F.; NAN, Z. Fungal endophyte improves survival of Lolium perenne in low fertility soils by increasing root growth, metabolic activity and absorption of nutrients. Plant and Soil, v.452, p.185-206, 2020. https://doi.org/10.1007/s11104-020-04556-7
FERSHALOVA, T.D.; BAIKOVA, E.V. Introduction of Begonia in greenhouses and interiors. Novosibirsk: Academic Publishing House «GEO», 2013. 157р.
FURTADO, M.D.G.; DE LIMA, L.G.; SOARES, A.M.R.; SOUZA, R.R.; YANO-MELO, A.M.; BECKMANN-CAVALCANTE M.Z. Establishment and production of Torch Ginger plants associated with arbuscular mycorrhizal fungi inoculation. Ornamental Horticulture, v.29, n.3, p.388-396, 2023. https://doi.org/10.1590/2447-536X.v29i3.2639
GU, C.Z.; PENG, C.I.; TURLAND, N.J. Begoniaceae, v.13. Eds. WU, Z.Y., RAVEN, P.H., HONG, D.Y. Flora of China. Beijing and St. Louis: Science Press and Missouri Botanical Garden Press, 2007. 153-207.
GUO, W.; LU, Y.; DU, S.; LI, Q.; ZOU, X.; ZHANG, Z.; SUI, L. Endophytic colonization of Beauveria bassiana enhances drought stress tolerance in tomato via “Water Spender” pathway. International Journal of Molecular Science, v.25, n.22, p.11949, 2024. https://doi.org/10.3390/ijms252211949.
HOSSEINABADI, S.; KHALEGHI, A.; AKRAMIAN, M.; KHADIVI, A. A highly efficient plant regeneration of Begonia rex Putz. by direct organogenesis of leaf explants. The Journal of Horticultural Science and Biotechnology, v.97, p.496-502, 2022. https://doi.org/10.1080/14620316.2021.2025157
HU, S.; BIDOCHKA M.J. Root colonization by endophytic insect-pathogenic fungi. Journal of Applied Microbiology, v.130, n.2, p.570-581, 2021. https://doi.org/10.1111/jam.14503
KARPOVA, E.A.; NABIEVA, A.YU.; FERSHALOVA, T.D. Leaf pigments and concentrations of phenolic compound in Begonia grandis plantlets obtained from the floral explants. Rendiconti Lincei. Scienze Fisiche e Naturali, v.32, p.921-930, 2021. https://doi.org/10.1007/s12210-021-01034-9
KRAMSKI, D.J.; NOWINSKI, D.; KOWALCZUK, K.; KRUSZY´NSKI, P.; RADZIMSKA, J.; GREB-MARKIEWICZ, B. Beauveria bassiana water extracts’effect on the growth of wheat. Plants, v.12(2), n.326, p.2-14, 2023. https://doi.org/10.3390/plants12020326
LIU, M.; XIANG, D.; HOKKANEN, H.M.T.; NIU, T.; ZHANG, J.; YANG, J.; WEI, Q.; CHEN, H.; LIU, H., LI, Y. Beauveria bassiana induces strong defense and increases resistance in tomato to Bemisia tabaci. Journal of Fungi, v.11, n.141. p.3-13, 2025. https://doi.org/10.3390/jof11020141
MACUPHE, N.; OGUNTIBEJU, O.O.; NCHU, F. Evaluating the endophytic activities of Beauveria bassiana on the physiology, growth, and antioxidant activities of extracts of Lettuce (Lactuca sativa L.). Plants, v.10, p.1178, 2021. https://doi.org/10.3390/plants10061178
MANTZOUKAS, S.; ELIOPOULOS, P.A. Endophytic entomopathogenic fungi: a valuable biological control tool against plant pests. Applied Science, v.10, p.360, 2020. https://doi.org/10.3390/app10010360
MANTZOUKAS, S.; PAPANTZIKOS, V.; KATSOGIANNOU, S.; PAPANIKOU, A.; KOUKIDIS, C.; SERVIS, D.; ELIOPOULOS, P.; PATAKIOUTAS, G. Biostimulant and bioinsecticidal effect of coating cotton seeds with endophytic Beauveria bassiana in semi-field conditions. Microorganisms, v.11, n.8, p.2050, 2023. https://doi.org/10.3390/microorganisms11082050
MENEGAES, J.F.; BACKES, F.A.A.L.; BELLÉ, R.A.; BACKES R.L. Diagnóstico do mercado varejista de flores de Santa Maria, RS. Ornamental Horticulture, v.21, n.3, p.291-298, 2015. https://doi.org/10.14295/oh.v21i3.629
MURASHIGE, T.; SKOOG, F.A. Revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, v.15, n.3, p.473-497, 1962. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
NABIEVA, A.Y.; FERSHALOVA, T.D. A novel approach for begonias micropropagation by inflorescence explants. Ornamental Horticulture, v.29, n.4, р.462-470, 2023. https://doi.org/10.1590/2447-536X.v29i4.2595
POSADA, F.; AIME, M.C.; PETERSON, S.W.; REHNER, S.A.; VEGA, F.E. Inoculation of coffee plants with the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales). Mycological Research, v.111, 748-757, 2007. https://doi.org/10.1016/j.mycres.2007.03.006
QUESADA-MORAGA, Е.; GARRIDO-JURADO, I.; GONZÁLEZ-MAS, N.; YOUSEF-YOUSEF, M. Ecosystem services of entomopathogenic ascomycetes. Journal of Invertebrate Pathology, v.201, p.108015, 2023. https://doi.org/10.1016/j.jip.2023.108015
REZAPOUR, A.; DEHESTANI-ARDAKANI, M.; KAMALI, K.; MEFTAHIZADE, H.; NASIRI, J. In vitro optimization of plant growth regulators and ex vitro acclimatization of various substrates in three cultivars of Begonia rex Putz. Journal of Plant Growth Regulation, v.44, p.4442–4467, 2025. https://doi.org/10.1007/s00344-025-11697-5
SABATINO, L.; D’ANNA, F.; TORTA, L.; FERRARA, G.; IAPICHINO, G. Arbuscular mycorrhizal inoculation and shading enhance crop performance and quality of greenhouse Begonia semperflorens. Acta Scientiarum Polonorum Hortorum Cultus, v.18, n.3, p.17-33, 2019. https://doi.org/10.24326/asphc.2019.3.2
SHAH, S.; SHAH, B.; SHARMA, R.; REKADWAD, B.; SHOUCHE, Y.S.; SHARMA, J.; PANT, B. Colonization with non-mycorrhizal culturable endophytic fungi enhances orchid growth and indole acetic acid production. BMC Microbiology, v.22, 101, 2022. https://doi.org/10.1186/s12866-022-02507-z
SUI, L.; LU, Y.; ZHOU, L.; LI, N.; LI, Q.; ZHANG, Z. Endophytic Beauveria bassiana promotes plant biomass growth and suppresses pathogen damage by directional recruitment. Frontiers in Microbiology, v.14, p.1227269, 2023. https://doi.org/10.3389/fmicb.2023.1227269
TANG, X.; WANG, X; CHENG, X.; WANG, XI.; FAN, W. Metarhizium fungi as plant symbionts. New Plant Protection, v.23, p.1-10, 2025. https://doi.org/10.1002/npp2.23
THEPBANDIT, W.; ATHINUWAT, D. Rhizosphere microorganisms supply availability of soil nutrients and induce plant defense. Microorganisms, v.12, n.3, p.558, 2024. https://doi.org/10.3390/microorganisms12030558
TIAN, D-K.; XIAO, Y.; LI, Y-CI.; YAN, K-J. Several new records, synonyms, and hybrid-origin of Chinese begonias. Phyto Keys, v.153, p.13-35, 2020. https://doi.org/10.3897/phytokeys.153.50805
TOMILOVA, O.G.; KRYUKOVA, N.A.; EFIMOVA, M.V.; KOLOMEICHUK, L.V.; KOVTUN, I.S.; GLUPOV, V.V. The endophytic entomopathogenic fungus Beauveria bassiana alleviates adverse effects of salt stress in potato plants. Horticulturae, v.9, p.1140, 2023. https://doi.org/10.3390/horticulturae9101140
YERUKALA, S., BUTLER, D. M., BERNARD, E., GWINN, K., GREWAL, P. S., OWNLEY, B. H. Colonization efficacy of the endophytic insect-pathogenic fungus, Beauveria bassiana, across the plant kingdom: a meta-analysis. Critical Reviews in Plant Sciences, v.41, p.241-270, 2022. https://doi.org/10.1080/07352689.2022.2109287
ZALE, P.J.; MCCORMICK, M.K.; WHIGHAM D.F. Choosing a favorable substrate to cultivate native orchids symbiotically: examples using Goodyera tesselata and Platanthera blephariglottis. Hortscience, v.57, n.5, p.634-642, 2022. https://doi.org/10.21273/HORTSCI16509-22
ZHENG, Y.; LIU, Y.; ZHANG, J.; LIU, X.; JU, Z.; SHI, H.; MENDOZA-MENDOZA, A.; ZHOU, W. Dual role of endophytic entomopathogenic fungi: induce plant growth and control tomato leaf miner Phthorimaea absoluta. Pest Management Science, v.79, 4557-4568, 2023. https://doi.org/10.1002/ps.7657
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Tatyana Fershalova, Aleksandra Nabieva, Maksim Tyurin

This work is licensed under a Creative Commons Attribution 4.0 International License.



