Can pruning enhance the allelopathic effect? A study with Golden-Dewdrop

Authors

DOI:

https://doi.org/10.1590/2447-536X.v30.e242705

Keywords:

allelopathy effect index, bioassay, Duranta erecta, Lactuca sativa, ornamental plants

Abstract

Golden-Dewdrop (Duranta erecta L.), known for its landscaping applications, undergoes successive pruning to maintain its ornamental structure, a practice known to induce numerous physiological and chemical responses in the plant. Therefore, this study aimed to evaluate the influence of pruning and different extraction methods on the allelopathic potential of Golden-Dewdrop on the germination and initial growth of lettuce. Leaf extracts were obtained by decoction (hot) and maceration (cold) at concentrations of 20%, 40%, 60%, 80%, and 100%, with distilled water as a negative control. Phytochemical screening of the extracts was performed for phenolic compounds, flavonoids, anthocyanidins, tannins, cardioactive heterosides, saponins, alkaloids, and terpenes. For the bioassay, germinative and morphological parameters were measured and characterized. The data were subjected to analysis of variance (ANOVA), and for quantitative data, regression models were adjusted, while for qualitative data, means were compared using the Scott-Knott test with 5% significance. Significant differences were observed between extraction methods and management practices, with the hot aqueous extract from pruned plants significantly reducing germination at higher concentrations. The initial growth of lettuce was severely affected, presenting numerous morphological abnormalities, with severe damage to the root system at all concentrations. This study suggests that pruning practices have a modulating effect on the allelopathic activity of Golden-Dewdrop, providing valuable information for landscaping projects and botanical studies considering its evaluation and production of phytotoxic phytochemicals.

Downloads

Download data is not yet available.

References

AHMED, W.S.; MOHAMED, M.A.; EL-DIB, R.A.; HAMED, M.M.New triterpene saponins from Duranta repens Linn, and their cytotoxic activity. Molecules, v.14, n.5, p.1952-1965, 2009. https://doi.org/10.3390/molecules14051952

AMÂNCIO, B.C.S.; GOVÊA, K.P.; TRINDADE, L.O.R.; CUNHA NETO, A.R.; SOUZA, T.C.; BARBOSA, S.; NETO, A.R.C.; TRINDADE, L.O.R.; SOUZA, T.C.; SILVA, G.A.; BARBOSA, S. Allelopathic activity of different Byrsonima spp.leaf extracts on Lactuca sativa L. bioassay. Biologia, v.76, n.11, p.3201-3209, 2021. https://doi.org/10.1007/s11756-021-00872-0

BRASIL. Farmacopeia Brasileira. 6ed. Brasilia: Agência Nacional de Vigilância Sanitária, 2019.958p.

BRICCHI, I.; LEITNER, M.; FOTI, M.; MITHÖFER, A.; BOLAND, W.; MAFFEI, M.E. Robotic mechanical wounding (MecWorm) versus herbivore-induced responses: early signaling and volatile emission in Lima bean (Phaseolus lunatus L.). Planta, v.232, n.3, p.719-729, 2010. https://doi.org/10.1007/S00425-010-1203-0

CALVELLI, J.V.B.; BETELLI, V.M.; BRAGA, D.V.B.; BASTOS, R.G.; CUNHA NETO, A.R.; VILEGAS, W.; SILVA, M.J.D.; SILVA, M.A.; SILVA, G.A.; BARBOSA, S. Phytochemical characterization and bioherbicide potential of Duranta erecta L. Alellopathy Journal, v.60, n.2, p.123-136, 2023. https://doi.org/10.26651/allelo.j/2023-60-2-1458

CARDOSO, C.M Z. Manual de controle de qualidade de matérias-primas vegetais para farmácia magistral. São Paulo: Pharmabooks, 2009.148p.

CUNHA NETO, A.R.; SILVA, I.G.; CALVELLI, J.V.B.; MARTINS, G.E.C.; CARVALHO, M.; BARBOSA, S. Toxicity of heavy metals that affect germination, development and cell cycle of Allium cepa L. Bulletin of Environmental Contamination and Toxicology, v.111, n.2, p.1-7, 2023. https://doi.org/10.1007/s00128-023-03775-9

FERREIRA, D.F. SISVAR: A computer analysis system to fixed effects split plot type designs. Brazilian Journal of Biometrics, v.37, n.4, p.529535, 2019. https://doi.org/10.28951/RBB.V37I4.450

GOVÊA, K.P.; PEREIRA, R.S.T.; ASSIS, M.D.O.; ALVES, P.I.; BRANCAGLION, G.A.; TOYOTA, A.E.; MACHADO, J.V.C.; CARVALHO, D.T.; SOUZA, T.C.; BEIJO, L.A.; TRINDADE, L.O.R.; BARBOSA, S. Allelochemical activity of eugenol-derived coumarins on Lactuca sativa L. Plants, v.9, n.4, p.533, 2020. https://doi.org/10.3390/plants9040533

HARTLEY, S.E.; FIRN, R.D.Phenolic biosynthesis, leaf damage, and insect herbivory in birch (Betula pendula). Journal of Chemical Ecology, v.15, n.1, p.275-283, 1989. https://doi.org/10.1007/BF02027789

HIRADATE, S.; YADA, H.; ISHII, T.; NAKAJIMA, N.; OHNISHI-KAMEYAMA, M.; SUGIE, H.; ZUNGSONTIPORN, S.; FUJII, Y. Three plant growth inhibiting saponins from Duranta repens. Phytochemistry, v.52, n.7, p.1223–1228, 1999. https://doi.org/10.1016/S0031-9422(99)00408-2

JIN, M.R.; WANG, Z.; HE, Z.S.; JIANG, -; LIU, J.F.; LAN; SHI, Y.W.; SHEN, C.X. Allelopathic effect of castanopsis kawakamii forest litter on seed germination of small philippine acacia (Acacia confusa). Applied Ecology and Environmental Research, v.17, n.6, p.15103-15116, 2019. https://doi.org/10.15666/aeer/1706_1510315116

KHANAL, P.; PATIL, B.M. Duranta repens Linn reverses hepatic and peripheral insulin resistance in fructose-induced hyperinsulinaemic rats – Experimental and computational findings. South African Journal of Botany, v.148, p.469-481, 2022. https://doi.org/10.1016/j.sajb.2022.05.011

KONG, C.; HU, F.E.I.; XU, X. Allelopathic potential and chemical constituents of volatiles from Ageratum conyzoides under stress. Journal of Chemical Ecology, v.28, n.6, p.1173-1182, 2002.

KRUIDHOF, H.M.; VAN DAM, N.M.; RITZ, C.; LOTZ, L.A.P.; KROPFF, M.J.; BASTIAANS, L. Mechanical wounding under field conditions: A potential tool to increase the allelopathic inhibitory effect of cover crops on weeds? European Journal of Agronomy, v.52, p.229-236, 2014. https://doi.org/10.1016/j.eja.2013.09.003

KUMAR, M.; GARKOTI, S.C. Allelopathy effects of invasive alien Ageratina adenophora on native shrub species of chir pine forest in the central Himalaya, India. Journal of Forest Research, v.27, n.1, p.53- 62, 2022. https://doi.org/10.1080/13416979.2021.2002505

LOPES, A.D.; NUNES, M.G.I.F.; FRANCISCO, J.P.; SANTOS, E.H. Potential allelopathic effect of species of the asteraceae family and its use in agriculture. In: EL-ESAWI, M.A. Asteraceae - Characterization, Recent Advances and Applications. London: IntechOpen, 2022. p.29.

MRID, R.B.; BENMRID, B.; HAFSA, J.; BOUKCIM, H.; SOBEH, M.; YASRI, A. Secondary metabolites as biostimulant and bioprotectant agents: A review. Science of the Total Environment, v.777, p.146204, 2021. https://doi.org/10.1016/J.SCITOTENV.2021.146204

NAKADA-FREITAS, P.G.; POSTINGUEL, L.M.; BERNARDO, M.P.; BONINI, C.S.B.; SANTOS, J.T.; RODRIGUES, C.S.; HIDALGO, G.F.; HEINRICHS, R.; LANNA, N.B.L.; NETO, A.B.; SANTOS, M.A.; MATOS, A.M.S. Conduction and pruning systems in mini watermelon ‘Sugar Baby’. Research, Society and Development, v.10, n.1, p.e34910111793, 2021. https://doi.org/10.33448/RSD-V10I1.11793

NOGUEIRA, M.L.; CAMPOS, N.A.; SANTOS, S.C.; BEIJO, L.A.; BARBOSA, S. The species used in urban afforestation can present phytotoxicity-a case of study of Schinus molle. Ciencia Florestal, v.31, n.1, p.66-84, 2021. https://doi.org/10.5902/1980509820597

PALANIVEL, H.; TILAYE, G.; BELLIATHAN, S.K.; BENOR, S.; ABERA, S.; KAMARAJ, M. Allelochemicals as natural herbicides for sustainable agriculture to promote a cleaner environment. In: ARAVIND, J. Strategies and Tools for Pollutant Mitigation.[s.l.]. New York City: Springer International Publishing, 2021. p.93-116.

PINTO, G.; KOLB, R. Seasonality affects phytotoxic potential of five native species of Neotropical savanna. Botany, v.94, n.2, p.81-89, 2015. https://doi.org/https://doi.org/10.1139/cjb-2015-0124

SHARMA, G.; MALTHANKAR, P.A.; MATHUR, V. Insect-plant interactions: a multilayered relationship. Annals of the Entomological Society of America, v.114, n.1, p.1-16, 2021. https://doi.org/10.1093/AESA/SAAA032

SILVA, V.B.; BEZERRA, J.W.A.; CRUZ, M.F.; LEANDRO, C.S.; SOUSA, J.F.O.; SANTOS, M.A.F.; SANTOS, A.C.B.; COSTA, N.C.; CAMPOS, N.B.; CORDEIRO, L.S.; COSTA, J.G.M.; SILVA, M.A.P. Allelopathy of Dahlstedtia araripensis on Calotropis procera and Zea mays. Journal of Agricultural Science, v.11, n.14, p.32, 2019. https://doi.org/10.5539/JAS.V11N14P32

SONG, W.; FENG, Q.; ZHANG, Y.; WU, X.; SHI, C.; WANG, S.The complete chloroplast genome sequence of Duranta erecta (Verbenaceae). Mitochondrial DNA Part B: Resources, v.6, n.7, p.1832-1833, 2021. https://doi.org/10.1080/23802359.2021.1934164

SRIVASTAVA, M.; SHANKER, K. Duranta erecta Linn: A critical review on phytochemistry, traditional uses, pharmacology, and toxicity from phytopharmaceutical perspective. Journal of Ethnopharmacology, v.293, p.115274, 2022. https://doi.org/10.1016/J.JEP.2022.115274

TUR, C.M.; BORELLA, J.; PASTORINI, L.H. Alelopatia de extratos aquosos de Duranta repens sobre a germinação e o crescimento inicial de Lactuca sativa e Lycopersicum esculentum. Biotemas, v.27, n.3, p.23-32, 2010. https://doi.org/10.5007/2175-7925.2010v23n2p13

WANG, L.; LIU, Y.; ZHU, X.; ZHANG, Z.; HUANG, X. Identify potential allelochemicals from Humulus scandens (Lour.) Merr.root extracts that induce allelopathy on Alternanthera philoxeroides (Mart.) Griseb. Scientific Reports, v.11, n.1, p.1-8, 2021. https://doi.org/10.1038/s41598-021-86656-7

YU, Y.; ZHONG, S.; XU, Z.; XU, Z.; WANG, C.; DU, D. Does the salt stress intensify the independent allelopathy and the co-allelopathy of Solidago canadensis L. and Conyza canadensis (L.) Cronq.? South African Journal of Botany, v.153, p.37-45, 2023. https://doi.org/10.1016/J.SAJB.2022.12.015

Downloads

Published

2024-06-20

Issue

Section

Articles