Sealing system to improve natural ventilation in culture vessels affects the in vitro development of mother-of-millions (Kalanchoe delagoensis Ecklon and Zeyher)
DOI:
https://doi.org/10.1590/2447-536X.v30.e242734Keywords:
chandelier plant, culture vessel lid, gas-permeable membranes, Kalanchoe, micropropagationAbstract
Sealing systems that provide greater permeability to gasses can favor the development of plants grown in vitro. The objective of this study was to evaluate the effectiveness of a low-cost sealing system that allows different gas exchange [TTCO2] to promote the in vitro growth of mother-of-millions (Kalanchoe delagoensis). Nodal segments of K. delagoensis were disinfected in sodium hypochlorite (2.5%) and inoculated in culture vessels with MS medium, sealed with rigid polypropylene lids with one (1M; TTCO2 21 μL L−1 s −1) or two (2M; TTCO2 25 μL L−1 s −1) gas-permeable membranes. In the control, the culture vessels were sealed with rigid polypropylene lids without membrane (0M; TTCO2 14 μL L−1 s −1). After 45 days of cultivation, growth parameters were measured. Plants kept in culture vessels with 0M and 1M lids had a significant increase in the total length of the plant, main root, aerial part and numbers of nodes when compared to the 2M sealing system. The number of leaves and plantlets along the leaf margin were 35,52%% and 43,69% higher in plants grown in culture vessels with a 1M sealing system. In conclusion, sealing systems that allows gas exchange rates of up to 21 μL L−1 s −1 (0M and 1M) provided the greatest in vitro development of mother-of-millions.
Downloads
References
AKULOVA-BARLOW, Z. Kalanchoe. Cactus and Succulent Journal, v.81, n.6, p.268-276, 2009. https://doi.org/10.2985/015.081.0601
BATISTA, D.S.; DIAS, L.L.C.; RÊGO, M.M.D.; SALDANHA, C.W.; OTONI, W.C. Flask sealing on in vitro seed germination and morphogenesis of two types of ornamental pepper explants. Ciência Rural, v.47, n.3, e20150245, 2017. https://doi.org/10.1590/0103-8478cr20150245
CASANOVA, J.M.; DOS SANTOS NASCIMENTO, L.B.; CASANOVA, L.M.; LEAL-COSTA M.V.; COSTA S.S.; TAVARES, E.S. Differential distribution of flavonoids and phenolic acids in leaves of Kalanchoe delagoensis Ecklon and Zeyher (Crassulaceae). Microscopy and Microanalysis, v.26, n.5, p.1061-1068, 2020. https://doi.org/10.1017/S1431927620024344
CUI, J.; KULIGOWSKA MACKENZIE, K.; EECKHAUT, T.; MÜLLER, R.; LÜTKEN, H. Protoplast isolation and culture from Kalanchoë species: optimization of plant growth regulator concentration for efficient callus production. Plant Cell, Tissue and Organ Culture, v.138, n.2, p.287–297, 2019. https://doi.org/10.1007/s11240-019-01624-4
FERREIRA, D.K.B.; DIAS, L.L.L.; SILVA, L.A.S.; NETTO, A.P.D.C.; KUSTER, V.C.; ROCHA, D.I. Cytokinin and flask sealing affect shoot proliferation and In vitro development of Jacaranda cuspidifolia MART. microcuttings. Revista Árvore, v.46, n.1, e4633, 2022. https://doi.org/10.1590/1806-908820220000033
FORTINI, E.A.; BATISTA, D.S.; MAMEDES-RODRIGUES, T.C.; FELIPE, S.H.S.; CORREIA, L.N.F.; CHAGAS, K.; SILVA, P.O; ROCHA, D.I; OTONI, W.C. Gas exchange rates and sucrose concentrations affect plant growth and production of flavonoids in Vernonia condensata grown in vitro. Plant Cell, Tissue and Organ Culture, v.144, n.3, p.593-605, 2021. https://doi.org/10.1007/s11240-020-01981-5
GARCÍA-PÉREZ, P.; BARREAL, M.E.; ROJO-DE DIOS, L.; CAMESELLE-TEIJEIRO, J.F.; GALLEGO, P.P. Bioactive natural products from the genus Kalanchoe as cancer chemopreventive agents: A review. In: Rahman A. Studies in Natural Products Chemistry. vol.61. Amsterdam: Elsevier, 2018.
GARCÍA-PÉREZ, P.; LOZANO-MILO, E.; LANDIN, M.; GALLEGO, P.P. From ethnomedicine to plant biotechnology and machine learning: the valorization of the medicinal plant Bryophyllum sp. Pharmaceuticals, v.13, n.12, p.444, 2020. https://doi.org/10.3390/ph13120444
GONÇALVES, L.A.; GERALDINE, R.M.; PICOLI, E.A.T.; VENDRAME, W.A.; DE CARVALHO, C.R.; OTONI, W.C. In vitro propagation of Herreria salsaparilha Martius (Herreriaceae) as affected by different sealing materials and gaseous exchanges. Plant Cell Tissue Organ Culture, v.92, p.243–250, 2008. https://doi.org/10.1007/s11240-007-9327-z
HSIEH, Y.J.; LEU, Y.L.; CHANG, C.J. The anti-cancer activity of Kalanchoe tubiflora. OA Alternative Medicine, v.1, n.2, p.18–30, 2013. https://doi.org/10.12172/2052-7845-1-2-748
JESUS SANTANA, M.; BARBOSA-JÚNIOR, S.M.; DIAS, L.L.L.; SILVA, L.A.S.; SILVA, G.S.; FORTINI E.A.; BATISTA, D.S.; OTONI W.C. NETTO, A.P.C.; ROCHA. D.I. A novel in vitro propagation system for West Indian elm [Guazuma ulmifolia Lam. (Malvaceae)]: a valuable medicinal woody species. In vitro Cellular and Developmental Biology Plant, v.58, n.6, p.865-875, 2022. https://doi.org/10.1007/s11627-022-10275-8
KAHRAMAN, M.U.; MENDI, Y.Y.; KARABIYIK, Ş.; LÜTKEN, H.V.; FAVERO, B.T. Kalanchoe breeding: past, present and future. Ornamental Horticulture, v.28, n.1, p.19-35, 2022. https://doi.org/10.1590/2447-536X.v28i1.2403
KATRUCHA, E.M.; LOPES, J.; PAIM, M., SANTOS, J.C.; SIEBERT, D.A.; MICKE, G.A; VITALI, L.; ALBERTON, M.D.; TENFEN, A. Phenolic profile by HPLC-ESI-MS/MS and enzymatic inhibitory effect of Bryophyllum delagoense. Natural Product Research, v.35, n.22, p.4824-4827, 2021. https://doi.org/10.1080/14786419.2020.1729147
KERTRUNG, T.; JUNKASIRAPORN, S. In vitro propagation of Kalanchoe rhombopilosa (Crassulaceae). NU International Journal of Science, v.15, n.1, p.37-48, 2018.
LOZANO-MILO, E.; GARCÍA-PÉREZ, P.; GALLEGO, P.P. Narrative review of production of antioxidants and anticancer compounds from Bryophyllum spp. (Kalanchoe) using plant cell tissue culture. Longhua Chin. Med, v.3, p.1-11, 2020. http://dx.doi.org/10.21037/lcm-20-46
MALDA, G.; BACKHAUS, R.A.; MARTIN, C. Alterations in growth and crassulacean acid metabolism (CAM) activity of in vitro cultured cactus. Plant Cell, Tissue and Organ Culture, v.58, p.1–9, 1999. https://doi.org/10.1023/A:1006377206855
MAMEDES-RODRIGUES, T.C.; BATISTA, D.S.; NAPOLEÃO, T.A.; FORTINI, E.A.; CRUZ, A.C.F.; COSTA, M.G.C.; OTONI, W.C. Regulation of cell wall development in Brachypodium distachyon in vitro as affected by cytokinin and gas exchange. Plant Cell, Tissue and Organ Culture, v.136, p.207–219, 2019. https://doi.org/10.1007/s11240-018-1506-6
MOHAMED, M.H.; ALSADON, A.A. Influence of ventilation and sucrose on growth and leaf anatomy of micropropagated potato plantlets. Scientia Horticulturae, v.123, n.3, p.295-300, 2010.
MORAES, R.M.; CERDEIRA, A.L.; LOURENÇO, M.V. Using micropropagation to develop medicinal plants into crops. Molecules, v.26, n.6, p.1752, 2021. https://doi.org/10.3390/molecules26061752
MURASHIGE, T.; SKOOG, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, v15, p.473-497, 1962.
NGUYEN, Q.T.; XIAO, Y.; KOZAI, T. Photoautotrophic micropropagation. Plant Factory, p.333-346, 2020. https://doi.org/10.1016/B978-0-12-816691-8.00023-6
NORTH Carolina extension gardener – Plant Toolbox. 2024. Available at: https://plants.ces.ncsu.edu
OLIVEIRA JUNIOR, J.B.; PESSOA, C.M.P.; SCHERWINSKI-PEREIRA, J.E.; LOPES, H.S.; COSTA, F.H.S. A simple, alternative and efficient sealing system to improve natural ventilation in culture vessels and the morphophysiological and anatomical quality of Croton lechleri (Muell. Arg.) grown in vitro. Biologia, v77, p.2945–2954, 2022. https://doi.org/10.1007/s11756-022-01140-5
OLIVEIRA, T.; BALDUINO, M.C.M.; DE CARVALHO, A.A.; BERTOLUCCI, S.K.V.; COSSA, M.C.; COELHO, A.D.; LEITE, J.J.R; PINTO, J.E.B.P. The effect of alternative membrane system, sucrose, and culture methods under photosynthetic photon flux on growth and volatile compounds of mint in vitro. In vitro Cellular & Developmental Biology Plant, v.57, n.3, p.529-540, 2021. https://doi.org/10.1007/s11627-020-10147-z
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Ornamental Horticulture
This work is licensed under a Creative Commons Attribution 4.0 International License.