Seed priming in Clitoria ternatea L. with multi-walled carbon nanotubes: A physicochemical and morphological approach
DOI:
https://doi.org/10.1590/2447-536X.v30.e242751Keywords:
edible flowers, MWCNTs, nanotechnology, propagationAbstract
Clitoria ternatea L. is valued for its ornamental characteristics, medicinal properties, and culinary uses. However, efficient production of this species is constrained by seed coat dormancy, which impedes germination and seedling production. This study aimed to explore the physicochemical and morphological aspects of C. ternatea seeds, focusing on overcoming dormancy by applying multi-walled carbon nanotubes (MWCNTs) functionalized with carboxylic acid. The seeds were characterized by their physical, chemical, and mineral composition. Characterization included color dominance, geometry, thousand seed weight, and moisture content analyses. The seeds were treated with different concentrations (0, 100, 200, 400, 800 mg L-1) of multi-walled carbon nanotubes (MWCNT) during 24 hours of soaking. Then the germination rates were evaluated and morphological analysis was performed using scanning electron microscopy. Regarding the morphometry of the seeds, they were characterized by an oblong shape, a predominance of black tegument coloration, high levels of proteins, carbohydrates, lipids, fibers, and the presence of minerals such as potassium, magnesium, iron, and calcium. Seeds soaked in MWCNTs at a concentration of 200 mg L-1 exhibited an increase in germination percentage and the formation of normal seedlings compared to the control group (seeds soaked in water). The results suggest that MWCNTs can help to overcome seed dormancy and improve the quality of the resulting seedlings. Image analysis and scanning electron microscopy were crucial in understanding the physicochemical characteristics of the seeds and their changes upon exposure to MWCNTs.
Downloads
References
AC, A. Association of official analytical chemists. Official methods of analysis of AOAC International, 1990.
ALI, M.H.; SOBZE, J.M.; PHAM, T.H.; NADEEM, M.; LIU, C.; GALAGEDARA, L.; CHEEMA, M.; THOMAS, R. Carbon nanotubes improved the germination and vigor of plant species from peatland ecosystem via remodeling the membrane lipidome. Nanomaterials, v.10, n.9, p.1852, 2020. https://doi.org/10.3390/nano10091852
AVALOS, J.F.V.; CÁRDENAS, J.A.B.; CEJA, J.V.R.; GUERRERO, J.D.J.B. Agrotecnia y utilización de Clitoria ternatea en sistemas de producción de carne y leche. Técnica Pecuaria en México, v.42, n.1, p.79-96, 2004.
BRANDÃO, R.M.; CARDOSO, M.G.; OLIVEIRA, J.E.; BARBOSA, R.B.; FERREIRA, V.R.F.; CAMPOLINA, G.A.; MARTINS, M.A.; NELSON, D.L.; BATISTA, L.R. Antifungal and antiocratoxigenic potential of and essential oils encapsulated in poly(lactic acid) nanofibers against fungi. Letters in Applied Microbiology, v.75, p.1, 2022. https://doi.org/10.1111/lam.13704
BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Regras para análise de sementes. Brasília: MAPA; ACS, 399 p., 2009.
CAMPBELL, S.M.; PEARSON, B.J.; MARBLE, S.C. Substrate type and temperature on germination parameters of butterfly pea. HortTechnology, v.30, n.3, p.398-403, 2020. https://doi.org/10.21273/HORTTECH04583-20
CONAMA. CONSELHO NACIONAL DO MEIO AMBIENTE -. Resolução nº 420, de 28 de dezembro de 2009. Dispõe sobre critérios e valores orientadores de qualidade do solo quanto à presença de substâncias químicas e estabelece diretrizes para o gerenciamento ambiental de áreas contaminadas por essas substâncias em decorrência de atividades antrópicas. Diário Oficial da República Federativa do Brasil, n.249, p.81-84, 30 dez. 2009.
COSTA, F.J.O.G.; DE GODOY, R.C.B.; LEIVAS, C.L.; PEREIRA, L.O.; WASZCZYNSKYJ, N. Alterações na composição físico-química de pinhões (Araucaria angustifolia) armazenados em diferentes embalagens e ambientes. Brazilian Journal of Forest Research/Pesquisa Florestal Brasileira, v.43, 2023. https://doi.org/10.4336/2023.pfb.43e202202262
EL-ATTAR, A.B.E.D.S.; SAKR, W.R.A. Extending vase life of carnation flowers by postharvest nano silver, humic acid and Aloe Vera gel treatments. Ornamental Horticulture, v.28, p.67-77, 2022. https://doi.org/10.1590/2447-536X.v28i1.2407
FERREIRA, D.F. SISVAR: A computer analysis system to fixed effects split plot type designs. Brazilian Journal of Biometrics, v.37, n.4, p.529-535, 2019. https://doi.org/10.28951/rbb.v37i4.450
GORCZYCA, A.; POCIECHA, E.; MATRAS, E. response of pea seedlings on multi-walled carbon nanotubes seed treatments. Proceedings of the 8th World Congress on New Technologies, 2022. https://doi.org/10.11159/icepr22.168
INSTITUTE FOR REFERENCE MATERIALS AND MEASUREMENTS. Certified reference material BCR®-320R. Disponível em: https://assets.lgcstandards.com/sys-master%2Fpdfs%2Fh77%2Fh49%2F10136547524638%2FCOA_BCR-320R_ST-WB-CERT-1768910-1-1-1.PDF
JAMIL, N.; ZAIRI, M.N.M.; NASIM, N.A.I.M.; PA’EE, F. Influences of environmental conditions to phytoconstituents in Clitoria ternatea (butterfly pea flower) – A review. Journal of Science and Technology, v.10, n.2, 2018. https://10.30880/jst.2018.10.02.029
JEYARAJ, E.J.; LIM, Y.Y.; CHOO, W.S. Antioxidant, cytotoxic, and antibacterial activities of Clitoria ternatea flower extracts and anthocyanin-rich fraction. Scientific reports, v.12, n.1, p.14890, 2022. https://doi.org/10.1038/s41598-022-19146-z
JOSHI, A.; KAUR, S.; DHARAMVIR, K.; NAYYAR, H.; VERMA, G. Multi walled carbon nanotubes applied through seed priming influence early germination, root hair, growth and yield of bread wheat (Triticum aestivum L.). Journal of the Science of Food and Agriculture, v.98, n.8, p.3148-3160, 2018. https://doi.org/10.1002/jsfa.8818
LOVATO, F.; KOWALESKI, J.; SILVA, S.Z.D.; HELDT, L.F.S. Composição centesimal e conteúdo mineral de diferentes cultivares de feijão biorfortificado (Phaseolus vulgaris L.). Brazilian Journal of Food Technology, v.21, 2017. https://doi.org/10.1590/1981-6723.6817
LUZ, P.B.; LIMA, B.F.S.; PAIVA SOBRINHO, S.; OLIVEIRA, A.S. Utilização de análise de imagem para avaliação da qualidade de sementes de Passiflora cincinnata (maracujá-do-mato). Multitemas, p.123-139, 2021. https://doi.org/10.20435/multi.v26i64.3191
MAGUIRE, J.D. Speed of germination aid in selection and evaluation for seedling emergence and vigor. Crop Science, v.2, n.2, p.176-77, 1962.
MANUAL GROUNDEYE® (2016). Tbit Tecnologia e Sistemas, Lavras, 2016. 88p.
MATHEW, S.; TIWARI, D.K.; TRIPATHI, D. Interaction of carbon nanotubes with plant system: A review. Carbon Letters, v.31, n.2, p.167-176, 2021. http://dx.doi.org/10.1007/s42823-020-00195-1
MATOS, G.D.; PEREIRA-FILHO, E.R.; POPPI, R.J.; ARRUDA, M.A.Z. Análise exploratória em química analítica com emprego de quimiometria: PCA e PCA de imagens. Revista Analytica, v.6, p.38-50, 2003.
MUKHERJEE, P.K.; KUMAR, V.; KUMAR, N.S.; HEINRICH, M. The Ayurvedic medicine Clitoria ternatea—from traditional use to scientific assessment. Journal of Ethnopharmacology, v.120, n.3, p.291-301, 2008. https://doi.org/10.1016/j.jep.2008.09.009
NILE, S.H.; THIRUVENGADAM, M.; WANG, Y.; SAMYNATHAN, R.; SHARIATI, M.A.; REBEZOV, M.; NILE, A.; SUN, M.; VENKIDASAMY, B.; XIAO, J.; KAI, G. Nano-priming as emerging seed priming technology for sustainable agriculture - recent developments and future perspectives. Journal of Nanobiotechnology, v.20, n.1, p.254, 2022. https://doi.org/10.1186/s12951-022-01423-8
PADMANABHAN, V.; KUMAR, S.S.; GIRIDHAR, P. Phytochemicals and UHPLC-QTOF-HRMS characterisation of bioactives of butterfly pea (Clitoria ternatea L.) seeds and their antioxidant potentials. Food Chemistry, v.433, p.137373, 2024. https://doi.org/10.1016/j.foodchem.2023.137373
PAIVA, P.D.O.; SILVA, D.P.C.; SILVA, B.R.D.; SOUSA, I.P.D.; PAIVA, R.; REIS, M.V. How scarification, GA3 and graphene oxide influence the in vitro establishment and development of Strelitzia. Plants, v.12, n.11, p.2142, 2023. http://dx.doi.org/10.3390/plants12112142
PEREIRA, A.D.E.S.; OLIVEIRA, H.C.; FRACETO, L.F.; SANTAELLA, C. Nanotechnology potential in seed priming for sustainable agriculture. Nanomaterials, v.11, n.2, p.267, 2021. https://doi.org/10.3390/nano11020267
SAYEDENA, S.V.; PILEHVAR, B.; ABRARI-VAJARI, K.; ZARAFSHAR, M.; EISVAND, H.R. Effects of seed nano-priming with multiwall carbon nanotubes (MWCNT) on seed germination and seedlings growth parameters of mountain ash (Sorbus luristanica Bornm.). Iranian Journal of Forest and Poplar Research, v.26, n.2, 2018. https://doi.org/10.22092/ijfpr.2018.116749
SHELAR, A.; NILE, S.H.; SINGH, A.V.; ROTHENSTEIN, D.; BILL, J.; XIAO, J.; CHASKAR, M.; KAI, G.; PATIL, R. Recent advances in nano-enabled seed treatment strategies for sustainable agriculture: challenges, risk assessment, and future perspectives. Nano-Micro Letters, v.15, n.1, p.54, 2023. https://doi.org/10.1007/s40820-023-01025-5
SHOBHARANI, M.; SUNDARESWARAN, S. Effect of different dormancy breaking treatments on seed germination and seedling growth in Shankhapushpi (Clitoria Ternatea L.). Journal of Pharmacognosy and Phytochemistry, v.7, n.4, p.1353-1355, 2018.
SILVA, A.G.; AZEREDO, G.A.; SOUZA, V.C.; MARINI, F.S.; PEREIRA, E.M. Influência da cor do tegumento e da temperatura na germinação e vigor de sementes de Crotalaria ochroleuca L. Revista Verde de Agroecologia e Desenvolvimento Sustentável, v.11, n.2, p.49-54, 2016. https://doi.org/10.18378/rvads.v11i2.4180
SILVA, D.J. Análise de alimentos: métodos químicos e biológicos. 2.ed. Viçosa: UFV, 1990. 165p.
SILVA, L.P.F.R.; QUEIROZ, A.J.M.; FIGUEIRÊDO, R.M.; CAMPOS, A.R.N.; DE MATOS, J.D.; DE MORAES, M.S.; SILVA, S.N.; GONÇALVES, M.G.; MASCARENHAS, M.N.H.; MEDEIROS NETO, M.S.; RODRIGUES, L.M.S.; VIEIRA, A.F.; COSTA, Z.T.; MOURA, R.L. Produção e efeito da germinação em sementes de jaca: caracterização química, física e físico-química. Revista de Ciências Agrárias, v.45, p.51-62, 2022. https://doi.org/10.19084/rca.25988
SILVA, P.; OLIVEIRA, A.C.; PEREIRA, L.A.; VALQUÍRIA, M.; CARVALHO, G.R.; MIRANDA, K.W.; MARCONSINI, J.M.; OLIVEIRA, J.E. Development of bionanocomposites of pectin and nanoemulsions of carnauba wax and neem oil pectin/carnauba wax/neem oil composites. Polymer Composites, v.41, n.3, p.858-870, 2020. https://doi.org/10.1002/pc.25416
TIMÓTEO, C.D.O.; PAIVA, R.; REIS, M.V.; CLARO, P.I.C.; SILVA, D.P.C.; MARCONCINI, J.M.; OLIVEIRA, J.E. Silver nanoparticles in the micropropagation of Campomanesia rufa (O. Berg) Nied. Plant Cell, Tissue and Organ Culture (PCTOC), v.137, p.359-368, 2019b. https://doi.org/10.1007/s11240-019-01576-9
TIMÓTEO, C.D.O.; PAIVA, R.; REIS, M.V.; CLARO, P.I.C.; FERRAZ, L.M.; MARCONCINI, J.M.; OLIVEIRA, J.E. In vitro growth of Physalis peruviana L. affected by silver nanoparticles. 3 Biotech, v.9, p.1-9, 2019a. http://dx.doi.org/10.1007/s13205-019-1674-z
TIWARI, D.K.; DASGUPTA-SCHUBERT, N.; VILLASEÑOR, L.M. Water absorption kinetics of Zea mays seedling using MWCNT as a growth promotor. Microscopy And Microanalysis, v.29, n.1, p.21-23, 2023. http://dx.doi.org/10.1093/micmic/ozad067.010
TRUJILLO, H.A.; GUILHIEN GOMES-JUNIOR, F.; LARA, I.A.R.D.; CICERO, S.M. Análise radiográfica e desempenho de sementes de café. Journal of Seed Science, v.41, p.431-440, 2019. https://doi.org/10.1590/2317-1545v41n4221804
VERMA, S.K.; SINGH, B. Seed germination, growth and yield of Clitoria ternatea under different sowing methods. Journal of Medicinal and Aromatic Plant Sciences, v.39, n.4, p.126-131, 2017.
YOUNIS, S.A.; KIM, K.H.; SHAHEEN, S.M.; ANTONIADIS, V.; TSANG, Y.F.; RINKLEBE, J.; DEEP, A.; BROWN, R.J. Advancements of nanotechnologies in crop promotion and soil fertility: Benefits, life cycle assessment, and legislation policies. Renewable and Sustainable Energy Reviews, v.152, p.111686, 2021. https://doi.org/10.1016/j.rser.2021.111686
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Ornamental Horticulture
This work is licensed under a Creative Commons Attribution 4.0 International License.