In vitro evaluation of plant growth promoting bacteria isolated from the cymbidian orchid

Authors

DOI:

https://doi.org/10.1590/2447-536X.v30.e242762

Keywords:

2-(1H-indol-3-yl) acetic acid, diazotrophic bacteria , floriculture, inoculant, nitrogen

Abstract

The diversity of Cymbidium hybrids, and the growing commercialization of orchids, reinforces the need for sustainable production, and the bioprospecting of diazotrophic bacteria can demonstrate potential for agricultural use. The objective of this study was to evaluate in vitro diazotrophic bacteria, isolated from rhizospheric soil and tissues of the Cymbidium orchid, and to analyze the solubilization capacity of phosphorus, potassium and phytohormones production. Leaves, pseudobulbs and rhizospheric soil were isolated in five different semi-solid and semi-selective mediums, NFb, JNFb, LGI, JMV and FAM, in order to verify the biological nitrogen fixation capacity, through the indicative movie on the surface of the medium. The bacteria were grouped, according to their morphological characteristics, in a dendrogram, and selected at 75% similarity, testing them for the production of indoleacetic acid (IAA). The isolates that stood out in terms of the production of the aforementioned phytohormone were tested for their ability to solubilize phosphorus and potassium, usage phosphate rock powder, AO-15, and potassium, phonolite, as a source, respectively. The 66 isolated strains fixed nitrogen, and the 18 strains with 75% similarity produced AIA. The 8 strains that stood out in the production of indoleacetic acid, in the absence and presence of tryptophan, did does not solubilize phosphorus, with the strains UNIFENAS 100-589, UNIFENAS 100-591, UNIFENAS 100-600, UNIFENAS 100-604, being able to solubilize potassium, demonstrating the potential agricultural use of growth -promoting bacteria in the cultivation of the Cymbidium orchid.

Downloads

Download data is not yet available.

References

AALLAM, Y.; MALIKI, B.E.; DHIBA, D.; LEMRISS, S.; SOUIRI, A.; HADDIOUI, A.; TARKKA, M.; HAMDALI, H. Multiple potential plant growth promotion activities of endemic Streptomyces spp. from moroccan sugar beet fields with their inhibitory activities against Fusarium spp. Microorganisms, v.9, n.7, p.1429, 2021. https://doi.org/10.3390/microorganisms9071429

ALBONETI, A.L.; CECCONELLO, D.M.; RINGENBERG, R.; SANTOS, C.V.; BONINI, A.K.; ALVES, L.F.A.; RANDO, J.S.S.; ALVES, V. Effect of phytosanitary products used on cassava crop on biological aspects of entomopathogenic fungi. Research, Society and Development, v.9, n.9, e450997248, 2020. http://dx.doi.org/10.33448/rsd-v9i9.7248

BEZERRA, G.A.; TAKITA, M.A.; TOSTA, C.D.; CECCATO-ANTONINI, S.R.; ROSA-MAGRI, M.M. Seleção de bactérias promotoras de crescimento de plantas isoladas de cana-de-açúcar. Semina: Ciências Agrárias, v.43, n.4, p.1757-1768, 2022. https://doi.org/10.5433/1679-0359.2022v43n4p1757

CASTELLANI, A. Viability of some pathogenic fungi in distilled water. Journal of Tropical Medicine and Hygiene, v.42, p.225-226, 1939.

CHAI, Y.N.; FUTRELL, S.; SCHACHTMAN, D.P. Assessment of Bacterial Inoculant Delivery Methods for Cereal Crops. Frontiers in Microbiology, v.13, e791110, 2022. https://doi.org/10.3389/fmicb.2022.791110

CHAKRABORTY, A.; KUNDU, S.; MUKHERJEE, S.; GHOSH, B. Endophytism in Zingiberaceae: elucidation of beneficial impact. Endophytes and Secondary Metabolites. Kolkata: Springer Nature, p.1-26, 2019. https://doi.org/10.1007/978-3-319-76900-4_31-1

CRUZ, E.S.; FREITAS, E.F.S.; SILVA, M.; PEREIRA, O.L.; KASUYA, M.C.M. A new mycorrhizal species of Ceratobasidium (Ceratobasidiaceae) associated with roots of the epiphytic orchid Gomesa recurva from the Brazilian Atlantic Forest. Phytotaxa, v.550, n.3, p.224-232, 2022. https://phytotaxa.mapress.com/pt/article/view/phytotaxa.550.3.2

DÖBEREINER, J.; BALDANI, V.L.D.; BALDANI, J.I. Como isolar e identificar bactérias diazotróficas de plantas não leguminosas. Itaguaí: Embrapa - Spi, 1995. 60p.

ETESAMI, H.; MAHESHWARI, D.K. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. Ecotoxicology and Environmental Safety, v.156, p.225-246, 2018. https://doi.org/10.1016/j. ecoenv.2018.03.013

FARIA, P.S.A.; MARQUES, V.O.; SELARI, P.J.R.G.; MARTINS, P.F.; SILVA, F.G.; SALES, J.F. Multifunctional potential of endophytic bacteria from Anacardium othonianum Rizzini in promoting in vitro and ex vitro plant growth. Microbiological Research, v.242, e126600, 2021. https://doi.org/10.1016/j.micres.2020.126600

FERREIRA, D.F. Sisvar: um guia dos seus procedimentos de comparações múltiplas Bootstrap. Ciência e Agrotecnologia, v.38, n.2, p.109-112, 2014. https://doi.org/10.1590/S1413-70542014000200001

FLORENTINO, L.A.; REZENDE, A.V.; MIRANDA, C.C.B.; MESQUITA, A.C.; MANTOVANI, J.R.; BIANCHINI, H.C. Potassium solubilization in phonolite rock by diazotrophic bacteria. Comunicata Scientiae, v.8, n.1, p.17-23, 2017. https://doi.org/10.14295/cs.v8i1.1292

FRIESEM, G.; REZNIK, N.; COHEN, M.S.; CARMI, N.; KEREM, Z.; YEDIDIA, I. Root-associated microbiomes, growth and health of ornamental geophytes treated with commercial plant growth-promoting products. Microorganisms, v.9, n.8, p.1785, 2021. https://doi.org/10.3390/microorganisms9081785

GORDON, S.A.; WEBER, R.P. Colorimetric estimation of indoleacetic acid. Plant Physioogy, v.26, n.1, p.192-195, 1951. https://doi.org/10.1104/pp.26.1.192

HERNÁNDEZ, A.G.; SILVA, E.P.; FERREIRA, P.A.A.; LOVATO, P.E.; OLIVEIRA, G.P.; SOARES, C.R.F.S. Métodos de inoculação e eficiência agronômica da estirpe Azospirillum brasilense Az39 para a cultura do milho em diferentes condições edafoclimáticas brasileiras. Revista Brasileira de Ciências Agrárias, v.19, n.1, e3609, 2024. https://doi.org/10.5039/agraria.v19i1a3609

IBRAFLOR (INSTITUTO BRASILEIRO DE FLORICULTURA). Diagnóstico Setor Ornamental Brasil – Base 2023 – CEPEA. Available at: <https://www.ibraflor.com.br/n%C3%BAmeros-do-setor-c%C3%B3pia>. Accessed at: May 3rd 2024.

KAUR, T.; DEVI, R.; KUMAR, S.; SHEIKH, I.; KOUR, D.; YADAV, A.N. Microbial consortium with nitrogen fixing and mineral solubilizing attributes for growth of barley (Hordeum vulgare L.). Heliyon, v.8, n.4, e09326, 2022. https://doi.org/10.1016/j.heliyon.2022.e09326

LOPES-ASSAD, M.L.; ROSA, M.M.; ERLER, G.; CECCATO-ANTONINI, S.R. Solubilização de pó-de-rocha por Aspergillus niger. Revista Espaço e Geografia, v.9, n.1, p.1-17, 2022. https://doi.org/10.26512/2236-56562006e39764

MAGALHÃES, F.M.M; DOBEREINER, J. Ocorrência de Azospirillum amazonense em alguns ecossistemas da Amazonia. Revista de Microbiologia, v.15, n.4, p.246-252, 1984.

MIRANDA, L.; PEREIRA, M.C.; VELOSO, T.G.R.; TARTARINE, N.; CARVALHO, S.B.G.; KASUYA, M.C.M. Endophytic fungi in roots of native orchids of rupestrian grasslands (campos rupestres) in Serra do Cipó, Brazil. Iheringia, Série Botânica, v.76, 2021. https://isb.emnuvens.com.br/iheringia/article/view/856

MOREIRA, F.M.S.; SILVA, K.; NÓBREGA, R.S.A.; CARVALHO, F. Diazotrophic associative bacteria: diversity, ecology and potential applications. Comunicata Scientiae, v.1, n.2, p.74, 2010. https://doi.org/10.14295/cs.v1i2.45

NORDSTEDT, N.P.; JONES, M.L. Isolation of rhizosphere bacteria that improve quality and water stress tolerance in greenhouse ornamentals. Frontiers in Plant Science, v.11, p.826, 2020. https://doi.org/10.3389/fpls.2020.00826

OLIVEIRA, A.J.; FRANCO, T.C.; FLORENTINO, L.A.; LANDGRAF, P.R.C. Characterization of associative diazotrophic bacteria in torch ginger. Semina: Ciências Agrárias, v.41, n.6, p.2815-2824, 2020. https://doi.org/10.5433/1679-0359.2020v41n6p2815

PARMAR, P.; SINDHU, S.S. Potassium solubilization by rhizosphere bacteria: influence of nutritional and environmental conditions. Journal of Microbiology Research, v.3, n.1, p.25-31, 2013.

PEDRINHO, E.A.N.; GALDIANO, Jr., R.F.; CAMPANHARO, J.C.; ALVES L.M.C.; LEMOS, E.G.M. Identificação e avaliação de rizobactérias isoladas de raízes de milho. Bragantia, v.69, n.4, p.905-911, 2010. https://doi.org/10.1590/S0006-87052010000400017

R CORE TEAM. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2022. Available at: R Project. Accessed at: April 25, 2024.

RASUL, M.; SUMERA, Y.; YAHYA, M.; BREITKREUZ, C.; TARKKA, M.; REITZ, T. The wheat growth-promoting traits of Ochrobactrum and Pantoea species, responsible for solubilization of different P sources, are ensured by genes encoding enzymes of multiple P-releasing pathways. Microbiological Research, v.246, e126703, 2021. https://doi.org/10.1016/j.micres.2021.126703

REIS, V.M.; ESTRADA-DE LOS SANTOS, P.; TENORIO-SALGADO, S.; VOGEL, J.; STOFFELS, M.; GUYON, S.; MAVINGUI, P.; BALDANI, V.L.D.; SCHMID, M.; BALDANI, J.L.; BALANDREAU, J.; HARTMANN, A.; CABALLERO-MELLADO, J. Burkholderia tropica sp. nov., a novel nitrogen-fixing, plant-associated bacterium. International journal of systematic and evolutionary microbiology, v.54, n.6, p.2155-2162, 2004. https://doi.org/10.1099/ijs.0.02879-0

REITER, N.; PHILLIPS, R.D.; SWARTS, N.D.; WRIGHT, M.; HOLMES, G.; SUSSMILCH, F.C.; DAVIS, B.J.; WHITEHEAD, M.R.; LINDE, C.C. Specific mycorrhizal associations involving the same fungal taxa in common and threatened Caladenia (Orchidaceae): Implications for conservation. Annals of Botany, v.126, n.5, p.943-955, 2020. https://doi.org/10.1093/aob/mcaa116

SALINAS, M.; HAKIM, G.; GANDOLFO, E.; LOJO, J.D.; GIARDINA, E.; BENEDETTO, A.D. Involvement of auxins in Impatiens walleriana plants grown in different plug tray systems during nursery. Ornamental Horticulture, v.28, n.3, p.347-354, 2022. https://doi.org/10.1590/2447-536X.v28i3.2511

SCHOEN-NETO, G.A.; SOARES, M.R.C.; SORACE, M.; DIAS-ARIEIRA, C.R. Nematicidas biológicos associados a biofertilizantes no manejo de Pratylenchus zeae em cana-de-açúcar. Revista Brasileira de Ciências Agrárias, v.14, n.4, p.1-7, 2021. https://doi.org/10.5039/agraria.v14i4a6560

SILVA, M.A.; NASCENTE, A.S.; FILIPPI, M.C.C.D.; LANNA, A.C., SILVA, G.B.D.; SILVA, J.F.A.E. Individual and combined growth-promoting microorganisms affect biomass production, gas exchange and nutrient content in soybean plants. Revista Caatinga, v.33, n.3, p.619-632, 2020. https://doi.org/10.1590/1983-21252020v33n305rc

SILVA, M.; CRUZ, E.S.; VELOSO, T.G.R.; MIRANDA, L.; PEREIRA, O.L.; BOCAYUVA, M.F.; KASUYA, M.C.M. Colletorichum serranegrense sp. nov., a new endophytic species from the roots of the endangered Brazilian epiphytic orchid Cattleya jongheana. Phitotaxa, v.351, n.2, p.163-170, 2018. https://doi.org/10.11646/phytotaxa.351.2.4

TEDESCO, M.J., GIANELLO, C., BISSANI, C.A., BOHNEN, H.; VOLKWEISS, S.J. Análises de solo, plantas e outros materiais. (Boletim Técnico). Porto Alegre: UFRGS, 1995.

TURCHETTO, R.; VOLPI, G.B.; SILVA, R.F.; ROS, C.O.; BARROS, S.; MAGALHÃES, J.B.; TROMBETTA, L.J.; ANDREOLA, D.S.; ROSA, G.M.; SILVA, A.P. Coinoculação de Azospirillum com fungos micorrízicos no cultivo de trigo em solo contaminado com cobre. Semina: Ciências Agrárias, v.44, n.4, p.1571-1586, 2023. https://doi.org/10.5433/1679-0359.2023v44n4p1571

ZENG, Q.; DING, X.; WANG, J.; HAN, X.; IQBAL, H.M.N.; BILAL, M. Insight into soil nitrogen and phosphorus availability and agricultural sustainability by plant growth-promoting rhizobacteria. Environmental Science and Pollution Research International, v.29, n.30, p.45089-45106, 2022. https://doi.org/10.1007/s11356-022-20399-4

Downloads

Published

2024-09-10

Issue

Section

Articles