Morphological, biochemical, and maximum quantum efficiency of photosystem (Fv/Fm) in African marigold (Tagetes erecta L.) affected by two soil amendments: rice husk biochar and zeolite

Authors

DOI:

https://doi.org/10.1590/2447-536X.v30.e242775

Keywords:

bedding plants, chlorophyll content, landscape, soil amendments

Abstract

The need for a more efficient agricultural production system has arisen due to factors such as rapid urbanization, climatic anomalies, water scarcity, and declining water quality in modern times. Bedding plants are one of the integral parts of the landscape and the African marigold is one of the most common and particularly popular. This study investigates the effects of biochar and zeolite on the morphological and biochemical properties, as well as the photosynthetic performance, of African marigold (Tagetes erecta L.) plants. The experiment followed a completely randomized design with four treatments: soil mixture alone (control), soil mixture amended with 10% (w/w) biochar, or 25 g zeolite kg-1, or a combination of both. Results indicated that biochar had a significant positive effect on the maximum quantum efficiency of photosystem II (Fv/Fm). On the other hand, zeolite alone significantly improved various growth parameters, including root and stem length, weight, turgor, flower length, plant height, and Fv/Fm, when compared to the control group. However, the use of zeolite also resulted in reductions in chlorophyll content and dry flower weight. Interestingly, the combined treatment of biochar and zeolite led to a significant increase in total soluble carbohydrates. However, this combined treatment did not have a significant impact on most other growth and Fv/Fm parameters. These findings suggest that while biochar and zeolite have positive effects on specific aspects of African marigold growth and physiology, their combined application may not be optimal.

Downloads

Download data is not yet available.

Author Biographies

Rudabeh Ghaderi, University of Kurdistan

Department of Horticultural Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran.

Farzad Nazari, University of Kurdistan

Department of Horticultural Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran.

Mahmoud Koushesh Saba, University of Kurdistan

Department of Horticultural Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran.

Himan Nourbakhsh, University of Kurdistan

Department of Food Science and Engineering, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran.

Negin Nazari, University of Kurdistan

Department of Horticultural Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran.

References

BBRUZZINI, T.F.; DAVIES, C.A.; TOLEDO, F.H.; CERRI, C.E.P. Dynamic biochar effects on nitrogen use efficiency, crop yield, and soil nitrous oxide emissions during a tropical wheat-growing season. Journal of Environmental Management, v.252, p.109638, 2019. https://doi.org/10.1016/j.jenvman.2019.109638

ABIDEEN, Z.; KOYRO, H.W.; HUCHZERMEYER, B.; ANSARI, R.; ZULFIQAR, F.; GUL, B.J.P.B. Ameliorating effects of biochar on photosynthetic efficiency and antioxidant defense of Phragmites karka under drought stress. Plant Biology, v.22, n.2, p.259-266, 2020. https://doi.org/10.1111/plb.13054

ADDAS, A. Influence of urban green spaces on quality of life and health with smart city design. Land, v.12, n.5, p.960, 2023. https://doi.org/10.3390/land12050960

ADEJUMO, S.A.; OWOLABI, M.O.; ODESOLA, I.F. Agro-physiologica effects of compost and biochar produced at different temperatures on growth, photosynthetic pigment and micronutrients uptake of maize crop. African Journal of Agricultural Research, v.11, n.8, p.661-673, 2016. https://doi.org/10.5897/ajar2015.9895

AGEGNEHU, G.; BIRD, M.I.; NELSON, P.N.; BASS, A.M. The ameliorating effects of biochar and compost on soil quality and plant growth on a Ferralsol. Soil Research, v.53, n.1, p.1-12, 2015. https://doi.org/10.1071/sr14118

AGUIRRE, J.L.; MARTIN, M.T.; GONZALEZ, S.; PEINADO, M. Effects and economic sustainability of biochar application on corn production in a mediterranean climate. Molecules, v.26, n.11, p.3313, 2021. https://doi.org/10.3390/molecules 26113313

AKBARI, H.; MODARRES-SASANVY, S.A.M.; HEIDARZADEH, A. Fertilizer systems deployment and zeolite application on nutrients status and nitrogen use efficiency. Journal of Plant Nutrition, v.44, n.2, p.196-212, 2021. https://doi.org/10.1080/01904167.2020.1806299

ALEMU, S.T. Photosynthesis limiting stresses under climate change scenarios and role of chlorophyll fluorescence: A review article. Cogent Food and Agriculture, v.6, n.1, p.1785136, 2020. https://doi.org/10.108 0/23311932.2020.1785136

AL-FATLAWI, H.H.; FLEIH, S.A.; ABDULLAH, K.M. Qualitative traits of two types of radish (Raphanus sativus L.) and their content of medically active substance sulforaphane in response to treatments with zeolite and nano-potassium. Journal of Kerbala for Agricultural Sciences, v.10, n.2, p.81-91, 2023. https://doi.org/10.59658/jkas.v10i2.1190

AMIRAHMADI, E.; GORBANI, M.; MOUDRY, J. Effects of zeolite on aggregation, nutrient availability, and growth characteristics of corn (Zea mays L.) in cadmium-contaminated soils. Water, Air, and Soil Pollution, v.233, n.11, p.436, 2022. https://doi.org/10.1007/S11270-022-05910-4/metrics

AMIRAHMADI, E.; MOHAMMAD HOJJATI, S.; KAMMANN, C.; GHORBANI, M.; BIPARVA, P. The potential effectiveness of biochar application to reduce soil Cd bioavailability and encourage oak seedling growth. Applied Sciences, v.10, n.10, p.3410, 2020. https://doi.org/10.3390/app10103410

BAGHBANI-ARANI, A.; JAMI, M.G.; NAMDARI, A.; KARAMI BORZ-ABAD, R. Influence of irrigation regimes, zeolite, inorganic and organic manures on water use efficiency, soil fertility and yield of sunflower in a sandy soil. Communications in Soil Science and Plant Analysis, v.51, n.6, p.711-725, 2020. https://doi.org/10.1080/00103624.2020.1729791

BAHADORAN, M.; SALEHI, H.; ESHGHI, S. Growth and flowering of tuberose as affected by adding natural zeolite to the culture medium. Journal of Plant Nutrition, v.35, n.10, p.1491-1496, 2012. https://doi.org/10.1080/01904167.2012.689909

BASHIR, S.; SALAM, A.; REHMAN, M.; KHAN, S.; GULSHAN, A.B.; IQBAL, J.; HU, H. Effective role of biochar, zeolite and steel slag on leaching behavior of Cd and its fractionations in soil column study. Bulletin of Environmental Contamination and Toxicology, v.102, p.567-572, 2019. https://doi.org/10.1007/S00128-019-02573-6/metrics

BATOOL, A.; TAJ, S.; RASHID, A.; KHALID, A.; QADEER, S.; SALEEM, A.R.; GHUFRAN, M.A. Potential of soil amendments (Biochar and Gypsum) in increasing water use efficiency of Abelmoschus esculentus L. Moench. Frontiers in Plant Science, v.6, p.138796, 2015. https://doi.org/10.3389/FPLS.2015.00733/bibtex

BOROS-LAJSZNER, E.; WYSZKOWSKA, J.; KUCHARSKI, J. Use of zeolite to neutralise nickel in a soil environment. Environmental Monitoring and Assessment, v.190, n.54, p.1-13, 2018. https://doi.org/10.1007/S10661-017-6427-Z/TABLES/7

CASTRONUOVO, D.; SATRIANI, A.; RIVELLI, A.R.; COMEGNA, A.; BELVISO, C.; COPPOLA, A.; LOVELLI, S. Effects of zeolite and deficit irrigation on sweet pepper growth. Horticulture, v.9, n.11, p.1230, 2023. https://doi.org/10.3390/horticulturae 9111230

CHANG, Y.; ROSSI, L.; ZOTARELLI, L.; GAO, B.; SHAHID, M.A.; SARKHOSH, A. Biochar improves soil physical characteristics and strengthens root architecture in Muscadine grape (Vitis rotundifolia L.). Chemical and Biological Technologies in Agriculture, v.8, n.7, p.1-11, 2021. https://doi.org/10.1186/S40538-020-00204-5/figures /3

CROUSE, D.L.; PIMAULT, L.; CHRISTIDIS, T.; LAVIGME, E.; THOMSON, E.M.; VILLENEUVE, P. J. Residential greenness and indicators of stress and mental well-being in a Canadian national-level survey. Environmental Research, v.192, p.110267, 2021. https://doi.org/10.1016/j.envres.2020.110267

DAS, S.K.; GHOSH, G.K. Soil health management through low cost biochar technology. Biochar Applications in Agriculture and Environment Management, p.193-206, 2020. https://doi.org/10.1007/978-3-030-40997-5_9

DE CANNIÈRE, S.; BAUR, M.J.; CHAPARRO, D.; JAGDHUBER, T.; JONARD, F. Water availability and atmospheric dryness controls on spaceborne sun-induced chlorophyll fluorescence yield. Remote Sensing of Environment, v.301, n.113922, 2024. https://doi.org/10.1016/j.rse.2023.113922

DING, Y.; LIU, Y.X.; WU, W.X.; SHI, D.Z.; YANG, M.; ZHONG, Z.K. Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns. Water, Air, and Soil Pollution, v.213, p.47-55, 2010. https://doi.org/10.1007/S11270-010-0366-4/metrics

DONG, L.; RAVELOMBOLA, W.; WENG, Y.; QIN, J.; BHATTARAI, G.; ZIA, B.; SHI, A. Seedling salt tolerance for above ground-related traits in cowpea (Vigna unguiculata (L.) Walp). Euphytica, v.215, n.53 p.1-22, 2019. https://doi.org/10.1007/S10681-019-2379-4/metrics

DURUKAN, H.; DEMIRBAS, A.; TURKEKUL, I. Effects of biochar rates on yield and nutrient uptake of sugar beet plants grown under drought stress. Communications in Soil Science and Plant Analysis, v.51, n.21, p.2735-2745, 2020. https://doi.org/10.1080/00103624.2020.1849257

FARHANGI-ABRIZ, S.; TORABIAN, S. Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress. Ecotoxicology and Environmental Safety, v.137, p.64-70, 2017. https://doi.org/10.1016/j.ecoeny.2016.11.029

FAROOQ, M.; ROMDHANE, L.; REHMAN, A.; AL-ALAWI, A.K.; AL-BUSAIDI, W.M.; ASAD, S.A.; LEE, D.J. Integration of seed priming and biochar application improves drought tolerance in cowpea. Journal of Plant Growth Regulation, v.40, p.1972-1980, 2021. https://doi.org/10.1007/S00344-020-10245-7/metrics

FINDUROVÁ, H.; VESELA, B.; PANZAROVA, K.; PYTELA, J.; TRTILEK, M.; KLEM, K. Phenotyping drought tolerance and yield performance of barley using a combination of imaging methods. Environmental and Experimental Botany, v.209, n.105314, 2023. https://doi.org/10.1016/j.envexpbot.2023.105314

GARG, A.; HUANG, H.; CAI, W.; REDDY, N.G.; CHEN, P.; HAN, Y.; ZHU, H.H. Influence of soil density on gas permeability and water retention in soils amended with in-house produced biochar. Journal of Rock Mechanics and Geotechnical Engineering, v.13, n.3, p.593-602, 2021. https://doi.org/10.1016/j.jrmge.2021.10.007

GAVILI, E.; MOOSAVI, A.A.; HAGHIGHI, A.A.K. Does biochar mitigate the adverse effects of drought on the agronomic traits and yield components of soybean? Industrial Crops and Products, v.128, p.445-454, 2019. https://doi.org/10.1016/j.indcrop.2018.11.047

GHORBANI, M.; AMIRAHMADI, E.; ZAMANIAN, K. In-situ biochar production associated with paddies: Direct involvement of farmers in greenhouse gases reduction policies besides increasing nutrients availability and rice production. Land Degradation and Development, v.32, n.14, p.3893-3904, 2021. https://doi.org/10.1002/ldr.4006

HAMIDPOUR, M.; FATHI, S.; ROOSTA, H.R. Effects of zeolite and vermicompost on growth characteristics and concentration of some nutrients in Petunia hybrida. Journal of Science and Technology of Greenhouse Culture, v.4, n.13, P.95-103, 2013. https://www.cabidigitallibrary.org/doi/full/10.5555/20133146080

HASSAN, W.; SABA, T.; JABBI, F.; WANG, B.; CAI, A.; WU, J. Improved and sustainable agroecosystem, food security and environmental resilience through zero tillage with emphasis on soils of temperate and subtropical climate regions: A review. International Soil and Water Conservation Research, v.10, n.3, p.530-545, 2022. https://doi.org/10.1016/j.iswcr.2022.01.005

HUNTER, R.F.; CLELAND, C.; CLEARY, A.; DROOMERS, M.; WhEELER, B.W.; SINNETT, D.; NIEUWENHUIJSEN, M.J.; BRAUBACH, M. Environmental, health, wellbeing, social and equity effects of urban green space interventions: A meta-narrative evidence synthesis. Environment International, v.130, p.104923, 2019. https://doi.org/10.1016/j.envint.2019.104923

IRIGOYEN, J.J.; EINERICH, D.W.; SANCHEZ DIAZ, M. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiologia Plantarum, v.84, n.1, p.55-60, 1992. https://doi.org/10.1111/j.1399-3054.1992.tb08764.x

KARIMZADEH, A.S.L., K.; GHORBANPOUR, M.; MAREFATZADEH KHAMENEH, M.; HATAMI, M. Influence of drought stress, biofertilizers and zeolite on morphological traits and essential oil constituents in Dracocephalum moldavica L. Journal of Medicinal Plants, v.17, n.67, p.91-112, 2018. http://jmp.ir/article-1-2267-en.html

KHAN, F.; IQBAL, M.; MOHIBULLAH, M.; AAMIR, S.S.; JATOI, S.A. Behavior of annual flower production against varied nutrition management. SABRAO Journal of Breeding and Genetics, v.55, n.5, p.1604-1615, 2023. http://doi.org/10.54910/sabrao2023.55.5.14

KHAN, Z.; RAHMAN, M.H.U.; HAIDER, G.; AMIR, R.; IKRAM, R.M.; AHMAD, S.; DANISH, S. Chemical and biological enhancement effects of biochar on wheat growth and yield under arid field conditions. Sustainability, v.13, n.11, p.5890, 2021. https://doi.org/10.3390/su13115890/s1

KLUGHAMMER, C.; SCHREIBER, U. Complementary PS II quantum yields calculated from simple fluorescence parameters measured by PAM fluorometry and the Saturation Pulse method. PAM Application Notes, v.1, n.2, p. 201-247, 2008.

KUL, R.; ARJUMEND, T.; EKINCI, M.; YILDIRIM, E.; TURAN, M.; ARGIN, S. Biochar as an organic soil conditioner for mitigating salinity stress in tomato. Soil Science and Plant Nutrition, v.67, n.6, p.693-706, 2021. https://doi.org/10.1080/00380768.2021.1998924

LI, S.; GU, S.; LIU, W.; HAN, H.; ZHANG, Q. Water quality in relation to land use and land cover in the upper Han River Basin, China. Catena, v.75, n.2, p.216-222, 2008. https://doi.org/10.1016/j.catena.2008.06.005

LICHTENTHALER, H.K.; BUSHMANN, C. Extraction of phtosynthetic tissues: chlorophylls and carotenoids. Current Protocols in Food Analytical Chemistry, v.1, n.1, p.F4-2, 2001.

MENG, Q.; ZHAO, S.; GENG, R.; ZHAO, Y.; WANG, Y.; YU, F.; MA, X. Does biochar application enhance soil salinization risk in black soil of northeast China (a laboratory incubation experiment)? Archives of Agronomy and Soil Science, v.67, n.11, p.1566-1577, 2021. https://doi.org/10.1080/03650340.2020.1800642

MONDAL, M.; BISWAS, B.; GARAI, S.; SARKAR, S.; BANERJEE, H.; BRAHMACHARI, K.; HOSSAIN, A. Zeolites enhance soil health, crop productivity and environmental safety. Agronomy, v.11, n.3, p.448, 2021. https://doi.org/10.3390/agronomy11030448

MUKHERJEE, A.; ZIMMERAMN, A.R. Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar–soil mixtures. Geoderma, v.193, p.122-130, 2013. https://doi.org/10.1016/J.geoderma.2012.10.002

NADEEM, S.M.; IMRAN, M.; NAVEED, M.; KHAN, M.Y.; AHMAD, M.; ZAHIR, Z.A.; CROWLEY, D.E. Synergistic use of biochar, compost and plant growth‐promoting rhizobacteria for enhancing cucumber growth under water deficit conditions. Journal of the Science of Food and Agriculture, v.97, n.15, p.5139-5145, 2017. https://doi.org/10.1002/jsfa.8393

NAZARI, F. Vegetative and reproductive responses of tuberose (Polianthes tuberosa L. cv. Dezful) to application of different amounts of natural clinoptilolite zeolite in potting medium. Journal of Soil and Plant Interactions-Isfahan University of Technology, v.9, n.4, p.81-94, 2019.

NAZARI, F.; FARAHMAND, H.; GHASEMI, G.M. The effects of different amounts of natural zeolite on vegetative and reproductive characteristics of Narcissus tazetta L. cv. Shahla. Journal of Plant Production, v.37, n.2, p.39-48, 2014. https://sid.ir/paper/165166/en

Ornam. Hortic., v.30, e242775, 2024

NAZARI, F.; KHOSH-KHUI, M.; SALEHI, H.; ESHGHI, S. Effect of natural zeolite on vegetative and physiological characteristics of African marigold (Tagetes erecta L.“Queen”). Horticulture, Environment, and Biotechnology, v.48, p.241-245, 2007.

PARK, J.H.; KANG, S.W.; YUN, J.J.; LEE, S.G.; KIM, S.H.; BEAK, J.S.; CHO, J.S. Effects of co-application of biochars and composts on lettuce growth. Korean Journal of Soil Science and Fertilizer, v.54, n.2, p.151-160, 2021. https://doi.org/10.7745/kjssf.2021.54.2.151

RAHIMI, E.; NAZARI, F.; JAVADI, T.; SAMADI, S.; DA SILVA, J.A.T. Potassium-enriched clinoptilolite zeolite mitigates the adverse impacts of salinity stress in perennial ryegrass (Lolium perenne L.) by increasing silicon absorption and improving the K/Na ratio. Journal of Environmental Management, v.285, p.112142, 2021. https://doi.org/10.1016/j.jenvman.2021.112142

REID, C.E.; RIEVES, E.S.; CARLSON, K. Perceptions of green space usage, abundance, and quality of green space were associated with better mental health during the COVID-19 pandemic among residents of Denver. PloS One, v.17, n.3, p.e0263779, 2022. https://doi.org/10.1371/journal.pone.0263779

SAFARI, S.; NAZARI, F.; VAFAEE, Y.; TEIXEIRA DA SILVA, J.A. Impact of rice husk biochar on drought stress tolerance in perennial ryegrass (Lolium perenne L.). Journal of Plant Growth Regulation, v.42, n.2, p.810-826, 2023. https://doi.org/10.1007/s00344-022-10588-3

SHETTY, R.; PRAKASH, N.B. Effect of different biochars on acid soil and growth parameters of rice plants under aluminium toxicity. Scientific Reports, v.10, n.12249, p.1, 2020.

TAVAKOLI VALA, M.; NAZARI, F.; BABAEI, S. The ameliorative effect of rice husk biochar on morpho-physiological and biochemical characteristics of African marigold (Tagetes erecta L.) under drought stress. Flower and Ornamental Plants, v.8, n.1, p.21-46, 2023. http://flowerjournal.ir/article-1-269-en.html

TOURAJZADEH, O.; PIRI, H.; NASERIN, A.; MAHDI CAHRI, M. Effect of nano biochar addition and deficit irrigation on growth, physiology and water productivity of quinoa plants under salinity conditions. Environmental and Experimental Botany, v.217, p.105564, 2024. https://doi.org/10.1016/j.envexpbot.2023.105564

VASSILINA, T.; NASIYEV, B.; RVAIDAROVA, G.; SHIBIKEYEVA, A.; SEITKALI, N.; SALYKOVA, A.; YERTAYEVA, Z. The effects of clinoptilolite type of zeolite and synthesised zeolite-enriched fertilizer on yield parameters of Cucumber (Cucumis sativus) plant and some chemical properties in dark chestnut soil. Eurasian Journal of Soil Science, v.12, n.3, p.277-281, 2023. https://doi.org/10.18393/ejss.1284506

YILDIRIM, E.; EKINCI, M.; TURAN, M. Impact of biochar in mitigating the negative effect of drought stress on cabbage seedlings. Journal of Soil Science and Plant Nutrition, v.21, n.3, p.2297-2309, 2021. https://doi.org/10.1007/S42729-021-00522-z/metrics

ZHANG, P.; YANG, F.; ZHANG, H.; LIU, L.; LIU, X.; CHEN, J.; LI, C. Beneficial effects of biochar-based organic fertilizer on nitrogen assimilation, antioxidant capacities, and photosynthesis of sugar beet (Beta vulgaris L.) under saline-alkaline stress. Agronomy, v.10, n.10, p.1562, 2020.

ZHAO, H.; XIE, T.; XIAO, H.; GAO, M. Biochar-based fertilizer improved crop yields and N utilization efficiency in a maize–Chinese cabbage rotation system. Agriculture, v.12, n.7, p.1030, 2022. https://doi.org/10.3390/agriculture12071030

Downloads

Published

2024-10-25

Issue

Section

Articles