Cultivo sustentável de zínia: influência da inoculação de rizobactérias na emergência e nos parâmetros biométricos
Palavras-chave:
Azospirillum brasilense, Bacillus amyloliquefaciens, Bacillus megaterium, Bacillus pumilus, Bacillus subtillis, Zinnia peruviana LResumo
As rizobactérias promotoras de crescimento em plantas estabelecem interações simbióticas benéficas com as plantas, exercendo um impacto positivo e sustentável no crescimento e no desenvolvimento de diversas espécies vegetais. A adoção de novas tecnologias sustentáveis no cultivo de plantas ornamentais pode aprimorar as vantagens competitivas no mercado. Este estudo investigou os efeitos das rizobactérias na emergência e no crescimento das mudas de Zinnia peruviana L., escolhida como espécie modelo devido à sua importância comercial na indústria de plantas ornamentais. O objetivo foi também avaliar se reaplicações de rizobactérias são necessárias ao longo do ciclo da planta. O experimento foi conduzido em duas fases. Na fase 1 foram utilizados seis tratamentos correspondendo a cinco rizobactérias (Azospirillum brasilense, Bacillus amyloliquefaciens, B. megaterium, B. pumilus, B. subtillis) e ausência de rizobactéria - controle; analisou-se a porcentagem e o Índice de Velocidade de Emergência de plântulas. Na fase 2, foi utilizado um esquema fatorial 6 x 2 com os mesmos tratamentos, combinados com uma ou duas aplicações, para avaliar o crescimento e o desenvolvimento das plantas. Os resultados mostraram que as rizobactérias não afetaram a taxa de emergência, mas B. amyloliquefaciens e B. subtilis aceleraram a emergência das mudas. Além disso, B. subtilis promoveu crescimento, desenvolvimento e floração superiores. Importante destacar que não foi necessária reaplicação durante o ciclo da planta, evidenciando o benefício prático de reduzir a frequência dos tratamentos, o que pode reduzir custos e minimizar o impacto ambiental na produção de plantas ornamentais.
Downloads
Referências
ANDRE, R.G.B.; GARCIA, A. Alguns aspectos climáticos do município de Jaboticabal – SP. Nucleus, v.12, n.2, p.263-269, 2015. https://doi.org/10.3738/1982.2278.1543
ALOO, B. N.; TRIPATHI, V.; MAKUMBA, B. A.; MBEGA, E. R. Plant growth-promoting rhizobacterial biofertilizers for crop production: The past, present, and future. Frontiers in Plant Science, v.13, 1002448, 2022. https://doi.org/10.3389/fpls.2022.1002448
ARNAOUTELI, S.; BAMFORD, N.C.; STANLEY-WALL, N.R.; KOVÁCS, Á.T. Bacillus subtilis biofilm formation and social interactions. Nature Reviews Microbiology, v.19, n.9, p.600-614, 2021. https://doi.org/10.1038/s41579-021-00540-9
BARBOSA, J.C.; MALDONADO JÚNIOR, W. AgroEstat - sistema para análises estatísticas de ensaios agronômicos - versão 1.1.0.711. Jaboticabal: UNESP, 2015. 396p.
BARRY, A.L.; THORNSBERRY, C. Susceptibility tests: diffusion test procedures. In: BALOWS, A.; HAUSER, W.J.; HERMANN, K.L.; ISENBERG, H.D.; SHAMODY, H.J. (eds) Manual of clinical microbiology. Washington DC: American Society for Microbiology, 1991. p.1117-1125.
CAMPOS, T.S.; PATRICIO, M.P.; VIEIRA, G.R.; SOUZA, A.M.B.; SANTOS, C.H.B.; RIGOBELO, E.C.; PIVETTA, K.F.L. Rhizobacteria in growth and quality of açaí seedlings. Ornamental Horticulture, v.29, n.2, p.210-217, 2023. https://doi.org/10.1590/2447-536X.v29i2.2596
CAMPOS, T.S.; VIEIRA, G.R.; SOUZA, A.M.B.; SANTOS, C.H.B.; RIGOBELO, E.C.; PIVETTA, K.F.L. Rhizobacteria increase the growth and quality of Handroanthus chrysotrichus (Mart. ex DC) Mattos seedlings. Revista Árvore, v.48, e4814, 2024. https://dx.doi.org/10.53661/1806-9088202448263634
CASSÁN, F.; CONIGLIO, A.; LÓPEZ, G.; MOLINA, R.; NIEVAS, S.; CARLAN, C.L.N.; DONADIO, F.; TORRES, D.; ROSAS, S.; PEDROSA, F.O.; SOUZA, E.; ZORITA, M. D.; BASHAN, L.; MORA, V. Everything you must know about Azospirillum and its impact on agriculture and beyond. Biology and Fertility of Soils, v.56, p. 461-479, 2020. https://doi.org/10.1007/s00374-020-01463-y
CAVALCANTE, F.G.; CHAVES, V.G.; SILVA, A.O.; MARTINS, C.M.; MARTINS, S.C.S. Actinobactérias benéficas do solo: potencialidades de uso como promotores de crescimento vegetal. Enciclopédia Biosfera, v.19, n.40, p.15-35, 2022. http://dx.doi.org/10.18677/EnciBio_2022B2
DIAS, A.S.; SANTOS, C.C. Bactérias promotoras de crescimento de plantas: conceitos e potencial de uso. Nova Xavantina: Pantanal, 2022. 98p.
DOBRZYŃSKI, J.; JAKUBOWSKA, Z.; DYBEK, B. Potential of Bacillus pumilus to directly promote plant growth. Frontiers in Microbiology, v.13, 1069053, 2022. http://dx.doi.org/10.3389/fmicb.2022.1069053
ECHENIQUE, D.R.; AGUILERA MERLO, C.; CRUCEÑO, A.M.; MATTANA, C.M.; SATORRES, S.E. Effect of the administration of Zinnia peruviana on nasal colonization and cutaneous infection by methicillin-resistant Staphylococcus aureus in a model mouse. Pharmacologyonline, v.1, p.174-185, 2020.
FURTAK, K.; GALAZKA, A. Edaphic factors and their influence on the microbiological biodiversity of the soil environment. Advancements of Microbiology, v.58, n.4, p.375-385, 2019. http://dx.doi.org/10.21307/PM-2019.58.4.375
GALLEGOS, J.; ÁLVARO, J. E.; URRESTARAZU, M. Container design affects shoot and root growth of vegetable plant. HortScience, v.55, n.6, p.787-794, 2020. https://doi.org/10.21273/HORTSCI14954-20
GOMAA, A.A-R.; SAMY, M.N.; YEHIA, S.Y.; KAMEL, M.S. A comprehensive review of phytoconstituents and biological activities of genus Zinnia. Journal of Advanced Biomedical and Pharmaceutical Sciences, v.2, n.1, p.29-37, 2019. https://dx.doi.org/10.21608/jabps.2018.5599.1024
GUIMARÃES, V.F.; KLEIN, J.; SILVA, A.S.L.; KLEIN, D.K. Eficiência de inoculante contendo Bacillus megaterium (B119) e Bacillus subtilis (B2084) para a cultura do milho, associado à fertilização fosfatada. Research, Society and Development, v.10, n.12,e431101220920, 2021. http://dx.doi.org/10.33448/rsd-v10i12.20920
LUO, L.; ZHAO, C.; WANG, E.; RAZA, A.; YIN, C. Bacillus amyloliquefaciens as an excellent agent for biofertilizer and biocontrol in agriculture: An overview for its mechanisms. Microbiological Research, v.259, 127016, 2022. https://doi.org/10.1016/j.micres.2022.127016
MATTANA, C.M.; CANGIANO, M.A.; SATORRES, S.E.; ALCARÁZ, L.E.; LACIAR, A.L. Potential genotoxicity of Zinnia peruviana extract. PhOL, v.30, p.72-80, 2016.
NASCIMENTO, F.X.; HERNÁNDEZ, A.G.; GLICK, B.R.; ROSSI, M.J. Plant growth-promoting activities and genomic analysis of the stress-resistant Bacillus megaterium STB1, a bacterium of agricultural and biotechnological interest. Biotechnology Reports, v.25, e00406, 2020. https://doi.org/10.1016/j.btre.2019.e00406
NGALIMAT, M.S.; YAHAYA, R.S.R.; BAHARUDIN, M.M.A.A.; YAMINUDIN, S.M.; KARIM, M.; AHMAD, S.A.; SABRI, S. A review on the biotechnological applications of the operational group Bacillus amyloliquefaciens. Microorganisms, v.9, n.3, p.614, 2021. http://dx.doi.org/10.3390/microorganisms9030614
OLEŃSKA, E.; MALEK, W.; WÓJCIK, M.; SWIECICKA, I.; THIJS, S.; VANGRONSVELD, J. Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: a methodical review. Science of the Total Environment, v.15, n.743, 140682, 2020. http://dx.doi.org/10.1016/j.scitotenv.2020.140682
QUEIROZ, A.T.S.; OLIVEIRA, B.C. Ação de microrganismos promotores do crescimento de plantas: uma revisão sistemática da literatura. Revista Psipro, v.2, n.5, p.98-112, 2023. https://doi.org/10.5281/zenodo.10020339
SAHM, D.F.; WASHINGTON II, J.A. Antibacterial susceptibility tests: dilution methods. In: BALOWS, A.; HAUSER, W.J.; HERMANN, K.L.; ISENBERG, H.D.; SHAMODY, H.J. (eds) Manual of clinical microbiology. Washington DC: American Society for Microbiology,1991.p.1105-1116.
SANTOS, A.F.; CORRÊA, B.O.; KLEIN, J.; BONO, J.A.M.; PEREIRA, L.C.; GUIMARÃES, V.F.; FERREIRA, M.B. Estado nutricional da cultura da aveia branca (Avena sativa L.) sob inoculação com Bacillus subtilis e B. megaterium. Research, Society and Development, v.10, n.5, e53410515270, 2021. http://dx.doi.org/10.33448/rsd-v10i5.15270
SANTOYO, G.; URTIS-FLORES, C.A.; LOEZA-LARA, P.D.; OROZCO-MOSQUEDA, M. D.C.; GLICK, B.R. Rhizosphere colonization determinants by plant growth-promoting rhizobacteria (PGPR). Biology, v.10, n.6, 475, 2021. https://doi.org/10.3390/biology10060475
SILVA, K.R.C.; SOUSA, L.A.M.; SILVA, F.L.S.; AZEVEDO, J.L.X.; SILVA, I.A.; PINTO JUNIOR, F.F.; SILVA, B.G.; ANDRADE, H.A.F.; DOIHARA, I.P.; SILVA-MATOS, R.R.S. Bacillus subtillis e Bacillus megaterium no crescimento inicial de melancia ‘SugarBaby’. Research, Society and Development, v.11, n.13, e96111335034, 2022. http://dx.doi.org/10.33448/rsdv11i13.35034
TAIZ, L.; ZEIGER, E.; MOLLER, I.M.; MURPHY, A. Fisiologia e Desenvolvimento Vegetal. Porto Alegre: Artmed Editora, 2017. 858p.
UNESP - Faculdade de Ciências Agrárias e Veterinárias - Câmpus de Jaboticabal. Dados estação convencional l, 2024. Available at: <https://www.fcav.unesp.br/#!/estacao-agroclimatologica/dados/estacao-convencional/>. Accessed on: Feb 12th, 2024.
VOCCIANTE, M.; GRIFONI, M.; FUSINI, D.; PETRUZZELLI, G.; FRANCHI, E. The role of plant growth-promoting rhizobacteria (PGPR) in mitigating plant’s environmental stresses. Applied Sciences, v.12, n.3, p.1231, 2022. https://doi.org/10.3390/app12031231
ZULFIQAR, F.; MOOSA, A.; FERRANTE, A.; DARRAS, A.; AHMED, T.; JALIL, S.; AL-ASHKAR, I.; EL SABAGH, A. Melatonin seed priming improves growth and physio-biochemical aspects of Zinnia elegans under salt stress. Scientia Horticulturae, v.323, 112495, 2023. https://doi.org/10.1016/j.scienta.2023.112495
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2025 Ornamental Horticulture

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.