Os bioestimulantes afetam o crescimento, a produção e a qualidade de Eustoma grandiflorum L. e Matthiola incana L.
DOI:
https://doi.org/10.1590/2447-536X.v31.e312816Palavras-chave:
ácido húmico, alongamento do caule, antioxidantes, isabion, longevidade pós-colheita, pulverização foliarResumo
O lisianthus (Eustoma grandiflorum L.), membro da família Gentianaceae, e o goivo (Matthiola incana L.), membro da família Brassicaceae, são amplamente cultivados como flores de corte e estão ganhando popularidade nos mercados paquistaneses nos últimos anos. Este estudo teve como objetivo avaliar a eficácia de bioestimulantes selecionados na melhoria do crescimento, rendimento e qualidade de lisianthus e goivo na Floriculture Research, Institute of Horticultural Sciences, University of Agriculture, Faisalabad, durante os anos de 2022-2023. O experimento foi estabelecido individualmente para cada espécie para elucidar os efeitos de três produtos diferente, sendo eles: Isabion (3 mL L-1), ácido húmico (0,4%) e Corteva XYZ (3 mL L-1). Ambos os experimentos foram dispostos em delineamento de blocos casualizados completos (RCBD) com três repetições de 20 plantas cada. Os bioestimulantes foram aplicados na dose de 3 mL L-1 de Isabion e Corteva XYZ e de 0,4% de ácido húmico, os quais foram pulverizados três vezes em intervalos de quinze dias até a colheita de cada espécie, começando quinze dias após o transplantio. Os resultados demonstraram diferenças significativas entre os tratamentos para Eustoma grandiflorum L. e Matthiola incana L. Lisianthus obteve o menor tempo de produção (59 dias) quando pulverizado com Corteva XYZ, enquanto a aplicação de Isabion em goivo produziu flores mais cedo (75,6 dias) em comparação com outros tratamentos testados. A aplicação de Isabion aumentou significativamente a altura da planta (60,3 e 79,6 cm), diâmetro da flor (39,8 e 4,2 mm), diâmetro do caule (4,0 e 6,1 mm), peso fresco do caule (77,6 e 86,1 g), peso seco do caule (16,9 e 15,1 g) e vida de vaso (8,8 e 7,5 dias) de lisianthus e goivo, respectivamente. A maior área foliar (27,7 e 32,9 cm2) foi registrada quando as plantas foram fornecidas com Corteva XYZ para lisianthus e goivo, respectivamente. Os maiores teores de clorofila foram registrados (75,3 SPAD) em lisianthus, enquanto (81,6 SPAD) em goivo, quando pulverizado com Isabion e ácido húmico, respectivamente. Isabion consistentemente produziu os melhores resultados, indicando seu potencial como um bioestimulante eficaz para promover o crescimento, o rendimento e os atributos de qualidade, e pode ser usado pelos produtores para aumentar o rendimento e a qualidade de espécies de corte especiais e selecionadas.
Downloads
Referências
ABDULLA, N. Effect of spraying foliar with humus and izomen biostimulants on some vegetative and flowering parameters of Freesia hybrida L. Al-Qadisiyah Journal For Agriculture Sciences, v.9, n.4, p.240-246, 2019. http://doi.org/10.33794/qjas.Vol9.Iss2.86
ALI, E.F.; HASSAN, F.A.S.; ELGIMABI, M. Improving growth yield and volatile oil content of Pelargonium graveolens L. Herit by foliar application with moringa leaf extract through motivating physiological and biochemical parameters. South African Journal of Botany, v.119 p.383-389, 2018. http://doi.org/10.1016/j.sajb.2018.10.003
ALI, H.K.; AHMAD, I.; ALI, M.; HUSSAIN, Z.; NADEEM, M.A.; REHMAN, M.A.; IFTIKHAR, M. Efficacy of exogenously applied bio- stimulants on quality production of Matthiola incana L. Sarhad Journal of Agriculture, v.38, n.4, p.1392-1404, 2022. https://dx.doi.org/10.17582/ journal.sja/2022/38.4.1392.1404
AL-SHAREEFI, M.J.; KHADIM, Z K.; HAKIM, R A. Effect of algae extract and bio-fertilizer on vegetative growth and flowering of Freesia hybrida L. Journal of Kerbala for Agricultural Sciences, v.6 n.3 p.16- 23, 2019. https://doi.org/10.59658/jkas.v6i3.746
ALZIYITUNIl, H.O.M. Effect of humic acid and gibberellic acid on growth, flowering and chemical composition of African marigold (Tagetes erecta). Journal of the Advances in Agricultural Researches, v.28, n.1, p.193-201, 2023. http://doi.org/10.21608/jalexu.2023.191961.1113
BHUPENCHANDR, I.; DEVI, S.H.; BASUMATARY, A.; DUTTA, S.; SINGH, L.K.; KALITA, P.; BORA, S.S.; DEVI, S.R.; SAIKIA, A.; SHARMA, P. Biostimulants potential and prospects in agriculture. International Research Journal of Pure and Applied Chemistry, v.21, p.20-35, 2020.
CARLETON, A.; FOOTE, B. Quantitative analysis of leaf area measurement methods. Botany Research Journal, v.42, p. 215-230, 1965.
COOPER, R.J.; SPOKAS, L.A. Growth, quality and foliar iron concentration of Kentucky bluegrass treated with chelated iron sources. Journal of the American Society for Horticultural Science, v.116, n.5, p.798-801, 1991.
DARRAS, A. Overview of the dynamic role of specialty cut flowers in the international cut flower market. HortTechnology, v.7, n.3 p.51-60, 2021. https://doi.org/10.3390/horticulturae7030051
EIANSARY, H.O.; MAHMOUD, E.A.; EL-ANSARY, D.O.; MATTAR, M.A. Effects of water stress and modern biostimulants on growth and quality characteristics of Mint. Agronomy, v.10, n.1, p.6, 2020. https://doi.org/10.3390/agronomy10010006
EL-GHAIT, A.; GOMAA, A.; YOUSSEF, S.M.N.; EL-NEMR, A. Effect of some growth substances and chemical fertilization on vegetative growth and chemical composition of Matthiola incana L. plant. Journal of Flowers Ornamental Plants, v.9, n.3, p.167-182, 2022. http://doi.org/10.21608/sjfop.2022.271280
EL-KOT, H.R.; ABDALLAH, S.A.; HASSAN, H.; ALI, M.A. Effect of chemical nitrogen fertilizer level and humic acid rate on Gladiolus grandiflorus productivity. Sinai Journal of Applied Sciences, v.9, n.1, p.29-40, 2020. http://doi.org/10.21608/sinjas.2020.86376
FERNANDEZ, V.; GIL-PELEGRIN, E.; EICHERT, T. Foliar water and solute absorption: an update. The Plant Journal, v.105, n.4, p.870-883, 2021. https://doi.org/10.1111/tpj.15090
FRANZONI, G.; COCETTA, G.; PRINSI, B.; FERRANTE, A.; ESPEN, L. Biostimulants on crops: Their impact under abiotic stress conditions. Horticulturae, v.8, n.3, p.189, 2022. https://doi.org/10.3390/horticulturae8030189
GIRI, B.; BEURA, S. Impact of plant growth regulators on post-harvest life of cut flowers of gerbera (Gerbera jemesonii. B) cv. Goliath. International Journal of Environment and Climate Change, v.11 n.8 p.154-162, 2021. https://doi.org/10.9734/ijecc/2021/v11i830468
HARBAUGH, B.K. Lisianthus (Eustoma grandiflorum L.). In: ANDERSON, N.O. Flower Breeding and Genetics: Issues, challenges and opportunities for the 21st Century. The Netherlands: Springer, 2006. p.644-663.
KISVARGA, S.; FARKAS, D.; BORONKAY, G.; NEMENYI, A.; ORLOCI, L. Effects of biostimulants in horticulture with emphasis on ornamental plant production. Agronomy, v.12, n.5, p.1043, 2022. https://doi.org/10.3390/agronomy12051043
LIN, Y.; JONES, M.L. Evaluating the growth-promoting effects of microbial biostimulants on greenhouse floriculture crops. HortScience, v.57, n.1, p.97-109, 2022. https://doi.org/10.21273/HORTSCI16149-21
NIU, J.; LIU, C.; HUANG, M.; LIU, K.; YAN, D. Effect of foliar fertilization: A Review of Current Status and Future Perspectives. Journal of Soil and Plant Nutrition, v.21, p.104-118, 2021.
NYAKEYO, A. Effect of bio slurry-enriched vermicomposts on two spotted spider mite, yield and postharvest quality of statice (Limonium sinuatum mill). Doctoral dissertation, Egerton University, 2023.
PATHANIA, S.; DILTA, B.S.; KUMAR, A. Response of biostimulants on growth, flowering, seed yield and quality of China aster (Callistephus chinensis L.) Nees). International Journal of Bio-resource and Stress Management, v.14 n.8, p.1108-1115, 2023. http://doi.org/10.23910/1.2023.3552
PRISA, D. Application of innovative biostimulants for growth and quality improvement in vegetable and ornamental crops. Biological and Pharmaceutical Sciences, v.26, n.2, p.10-16, 2024. http://doi.org/10.30574/gscbps.2024.26.2.004
ROUPHEAL, Y.; COLLA, G. Editorial: biostimulants in agriculture. Frontiers of Plant Science, v.11, p.40, 2020. http://doi. org/10.3389/fpls.2020.00040
SHAHRAJABIAN, M.H.; CHASKI, C.; POLYZOS, N.; TZORTZAKIS, N.; PETROPOULOS, S.A. Sustainable agriculture systems in vegetable production using chitin and chitosan as plant biostimulants. Biomolecules, v.11, n.6, p.819, 2021. https://doi.org/10.3390/biom11060819
SHAHRAJABIAN, M.H.; PETROPOULOS, S.A.; SUN, W. Survey of the influences of microbial biostimulants on horticultural crops: Case studies and successful paradigms. Horticulturae, v.9, n.2, p.193, 2023. https://doi.org/10.3390/horticulturae9020193
SIVASANKAR, S.; IIAKKIYA, P.; RAMESHKUMAR, S.; MURUGANDAM, C.; KARTHIKEYAN, P.K. Effect of organic manures and foliar application of fish amino acid on yield and quality parameters of African marigold (Tagetes erecta L.). Plant Archives, v.21, n.1, p.2532- 2534, 2021. https://doi.org/10.51470/PLANTARCHIVES
STEEL, R.G.D.; TORRIE, J.H.; DICKY, D.A. Principles and Procedures of Statistics: A Biometric Approach. 3rd ed. New York: McGraw Hill Book Co. Inc., 1997. p.328-345.
SUCHITHA, N.; BABU, K.K.; LAKSHMINARAYANA, D.; KUMAR, S.P. Studies on the effect of biostimulants on quality of cut flower of chrysanthemum (Dendranthema grandiflora) cv. Denjigar Whitec. International Journal of Environment and Climate Change, v.13 n.10, p.687-692, 2023. http://doi.org/10.9734/ijecc/2023/v13i102704
TAVARES, A.R.; DOS SANTOS, P.L.F.; ZABOTTO, A.R.; DO NASCIMENTO, M.V.L.; JORDAO, H.W.C.; BOAS, R.L.V.; BROETTO,
F. Seaweed extract to enhance marigold seed germination and seedling establishment. SN Applied. Sciences, v.2, p.1-6, 2020.
TREJO-TELLEZ, I.; GOMEZ-MERINO, F.C. Phosphite as an inductor of adaptive responses to stress and stimulator of better plant performance. Biotic and Abiotic Stress Tolerance in Plants, p.203-238, 2018. http://doi.org/10.1007/978-981-10-9029-58
TYAGI, A.; ALI, S.; RAMAKRISHNA, G.; SINGH, A.; PARK, S.; MAHMOUDI, H.; BAE. H. Revisiting the role of polyamines in plant growth and abiotic stress resilience: Mechanisms, crosstalk, and future perspectives. Journal of Plant Growth Regulation, p.5074-5098, 2023. http://doi.org/10.1007/s00344-022-10847-3
VIDYA, A.; SHIVPURE, A.; HANUMANTHARAYYA, B.G. Influence of biostimulants on growth and yield of China aster (Callistephus chinensis) cv. Poornima. Journal of Pharmaceutical Innovation, v.11, p.3056-3064, 2022.
WADAS, W.; DZIUGIEL, T. Quality of new potatoes (Solanum tuberosum L.) in response to plant biostimulants application. Agriculture, v.10, n.7, p.265, 2020. https://doi.org/10.3390/agriculture10070265
YILDRIM, E.; EKINCI, M.; TURAN, M.; AGAR, G.; DURSUN, A.; KUL, R.; ALIM, Z.; ARGIN, S. Humic + Fulvic acid mitigated Cd adverse effects on plant growth, physiology and biochemical properties of garden cress. Scientific Reports, v.11, n.1, p.8040, 2021.
YUCEL, G.; ERKEN, K.; DOGAN, Y. E. Organic stimulant uses in natural plant production. Egyptian Journal of Horticulture, v.47, n.2, p.119-128, 2020. http://doi.org/10.21608/ejoh.2020.41337.1142
ZELJKOVIĆ, S.B.; PARADIKOVIC, N.; MAKSIMOVIC, I.; TEKLIC, T.; TKALEC KOJIC, M. Growth and nutrient status of French marigold (Tagetes patula L.) under bio-stimulant application. New Zealand Journal of Crop and Horticultural Science, v.51, n.4 p. 614-624, 2023. http://doi.org/10.3390/pr11082300
ZELJKOVIĆ, S.B.; PARAĐIKOVIĆ, N.A.; BABIĆ, T.S.; ĐURIĆ, G.D.; OLJAČA, R.M.; VINKOVIĆ, T.M.; TKALEC, M.B. Influence of
biostimulant and substrate volume on root growth and development of scarlet sage (Salvia splendens L.) transplants. Journal of Agricultural Sciences. v.55, n.1, p. 29-36. 2010. https://doi.org/10.2298/JAS1001029Z
ZHOU, W.; ZHENG, W.; LV, H.; WANG, Q.; LIANG, B.; Li, J. Foliar application of pig blood-derived protein hydrolysates improves antioxidant activities in lettuce by regulating phenolic biosynthesis without compromising yield production. Scientia Horticulturae, p.291- 1106, 2022. https://doi.org/10.1016/j.scienta.2021.110602
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2025 Ornamental Horticulture

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.