A melatonina regula o estresse oxidativo para retardar a senescência em Hemerocallis fulva L.
DOI:
https://doi.org/10.1590/2447-536X.v31.e312832Palavras-chave:
enzimas antioxidantes, lipoxigenase, peróxido de hidrogênio, prolina, vida em vasoResumo
A melatonina emergiu como um potente regulador do crescimento vegetal, melhorando significativamente a qualidade pós-colheita de produtos hortícolas. Estruturalmente análoga ao hormônio vegetal ácido indol-3-acético, regula processos importantes como a germinação de sementes, o crescimento, a floração e a defesa contra estresses abióticos. Suas poderosas propriedades antioxidantes a tornam um eficaz eliminador de radicais livres, aumentando a resiliência das plantas ao estresse oxidativo e a posiciona como um fitorregulador inovador para tratamentos pós-colheita. O presente estudo explora a eficácia da melatonina em retardar a senescência de escapos destacados de Hemerocallis fulva. Os escapos foram colhidos na fase em que o botão mais maduro estava um dia antes da antese e tratados com diferentes concentrações de melatonina (40, 80, 120 e 160 µM). Os resultados indicam que o tratamento com 120 µM de melatonina retardou significativamente a senescência, prolongando a vida de vaso dos escapos florais (12 dias) em comparação aos controles não tratados (7 dias), que apresentaram senescência acelerada. A aplicação de melatonina foi associada ao aumento da atividade de enzimas antioxidantes, redução da atividade de lipoxigenase e níveis reduzidos de peróxido de hidrogênio (H2O2), atenuando coletivamente o estresse oxidativo. Além disso, a melatonina aumentou o conteúdo de proteínas solúveis, fenóis, frações de açúcares e prolina nos tecidos das tépalas. O tratamento também suprimiu efetivamente a proliferação bacteriana e melhorou a absorção de solução nos escapos florais. Esses resultados sugerem que a melatonina modula a senescência de H. fulva ao orquestrar respostas ao estresse oxidativo e melhorar a qualidade pós-colheita, oferecendo uma abordagem holística e inovadora para o manejo pós-colheita.
Downloads
Referências
AEBI, H. Catalase in vitro. Methods in Enzymology, v.105, p.121-126, 1984. https://doi.org/10.1016/s0076-6879(84)05016-3
AHAMMED, G.J.; WU, M.; WANG, Y.; YAN, Y.; MAO, Q.; REN, J.; CHEN, S. Melatonin alleviates iron stress by improving iron homeostasis, antioxidant defense and secondary metabolism in cucumber. Scientia Horticulturae, v.265, p.109205, 2020. https://doi.org/10.1016/j.scienta.2020.109205
AHMAD, S.; SU, W.; KAMRAN, M. Foliar application of melatonin delay leaf senescence in maize by improving the antioxidant defense system and enhancing photosynthetic capacity under semi-arid regions. Protoplasma, v.257, p.1079-1092, 2020. https://doi.org/10.1007/s00709- 020-01491-3
ALEXIEVA, V.; SERGIEV, I.; MAPELLI, S.; KARANOV, E. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell & Environment, v.24, n.12, p.1337-1344, 2001. https://doi.org/10.1046/j.1365-3040.2001.00778.x
ALTAF, M.A.; HAO, Y.; SHU, H.; MUMTAZ, M.A.; CHENG, S.; ALYEMENI, M.N., WANG, Z. Melatonin enhanced the heavy metal- stress tolerance of pepper by mitigating the oxidative damage and reducing the heavy metal accumulation. Journal of Hazardous Materials, v.454, p.131468, 2023. https://doi.org/10.1016/j.jhazmat.2023.131468
AXEROLD, B.; CHESBROUGH, TM; LAAKSO, S. Lipoxygenase from soybean. In: LOWENSTEIN, J.M. (ed). Methods of enzymology. New York: Academic Press, 1981. p.441-451. https://doi.org/10.1016/0076-6879(81)71055-3
BATES, L.S.; WALDREN, R.P.; TEARE, I.D. Rapid determination of free proline for water-stress studies. Plant and Soil, v.39, p.205-207, 1973. https://doi.org/10.1007/BF00018060
BOSE, S.K.; HOWLADER, P. Melatonin plays multifunctional role in horticultural crops against environmental stresses: A review. Environmental and Experimental Botany, v.176, p.104063, 2020. https://doi.org/10.1016/j.envexpbot.2020.104063
CHEN, GX; ASADA, K. Ascorbate peroxidase in tea leaves: occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiology, v.30, p.987-998, 1989. https://doi.org/10.1093/oxfordjournals.pcp.a077844
DHINDSA, R.S.; PLUMB-DHINDSA, D.; THORPE, T.A. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, v.32, p.93-101, 1981. https:// doi.org/10.1093/jxb/32.1.93
HAQ, A.U.; FAROOQ, S.; LONE, M.L. Blossoming Beyond Time: Proline orchestrates flower senescence in Ranunculus asiaticus L. by modulating biochemical and antioxidant machinery. Journal of Plant Growth Regulation, 2024. https://doi.org/10.1007/s00344-024-11452-2
HASANUZZAMAN, M.; BHUYAN, M.B.; ZULFIQAR, F.; RAZA, A.; MOHSIN, S.M.; MAHMUD, J.A.; FOTOPOULOS, V. Reactive oxygen
species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants, v.9, n.8, p.681 2020. https://doi.org/10.3390/antiox9080681
JINDAL, P.; KANT, K.; KAUR, N.; GUPTA, S.; ALI, A.; NAEEM, M. Melatonin: discovery, biosynthesis, phytohormones crosstalk, and roles in agricultural crops under abiotic stress conditions. Environmental and Experimental Botany, p.105942, 2024. https://doi.org/10.1016/j.envexpbot.2024.105942
JING, T.; LIU, K.; WANG, Y.; AI, X.; BI, H. Melatonin positively regulates both dark-and age-induced leaf senescence by reducing ROS accumulation and modulating abscisic acid and auxin biosynthesis in cucumber plants. International Journal of Molecular Sciences, v.23, n.7, p.3576. https://doi.org/10.3390/ijms23073576
KAYA, C.; SARIOGLU, A.; ASHRAF, M.; ALYEMENI, M. N.; AHMAD, P. The combined supplementation of melatonin and salicylic acid effectively detoxifies arsenic toxicity by modulating phytochelatins and nitrogen metabolism in pepper plants. Environmental Pollution, v.297, p.118727, 2022. https://doi.org/10.1016/j.envpol.2021.118727
LONE, M.L.; FAROOQ, S.; HAQ, A.U. Antagonistic interrelation between abscisic acid and gibberellic acid in the regulation of senescence in ray florets of Calendula officinalis L. Journal of Plant Growth Regulation, v.43, n.10, p.3671-3684, 2024. https://doi.org/10.1007/ s00344-024-11342-7
LOWRY, O.H.; ROSEBROUGH, N.J.; FARR, A.L.; RANDALL, R.J. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, v.193, n.1, p.265-275, 1951. https://doi.org/10.1016/s0021-9258(19)52451-6
LU, X.; MIN, W.; SHI, Y.; TIAN, L.; LI, P.; MA, T.; LUO, C. Exogenous melatonin alleviates alkaline stress by removing reactive oxygen species and promoting antioxidant defence in rice seedlings. Frontiers in Plant Science, v.13, p.849553, 2022. https://doi.org/10.3389/fpls.2022.849553
MAZROU, R.M.; HASSAN, S.; YANG, M.; HASSAN, F.A.S. Melatonin preserves the postharvest quality of cut roses through enhancing the antioxidant system. Plants, v.11, p.2713, 2022. https://doi.org/10.3390/plants11202713
NAING, A.H.; WIN, N.M.; HAN, J.S.; LIM, K.B.; KIM, C.K. Role of nano-silver and the bacterial strain Enterobacter cloacae in increasing vase life of cut carnation ‘Omea’. Frontiers in Plant Science, v.8, p.1590, 2017. https://doi.org/10.3389/fpls.2017.01590
NELSON, N. A photometric adaptation of the Somogyi method for the determination of glucose. Journal of Biological Chemistry, v.153, p.375-380, 1944. https://doi.org/10.1016/s0021-9258(18)71980-7
NOUSIS, L.; KANAVAROS, P.; BARBOUTI, A. Oxidative stress-induced cellular senescence: is labile iron the connecting link?. Antioxidants, v.12, n.2, p.1250, 2023. https://doi.org/10.3390/antiox12061250
PHUA, S.Y.; SMET, B.; REMACLE, C.; CHAN, K.X.; BREUSEGEM, F. Reactive oxygen species and organellar signaling, Journal of Experimental Botany, v.72, n.16, p.5807-5824, 2021 https://doi.org/10.1093/jxb/erab218
RODRIGUEZ-ENRIQUEZ, M.J.; GRANT-DOWNTON, R.T. A new day dawning: Hemerocallis (daylily) as a future model organism. AoB Plants, v5, p.055, 2013. https://doi.org/10.1093/aobpla/pls055
SAIRAM, R.K. Effect of moisture stress on physiological activities of two contrasting wheat genotypes. Indian Journal of Experimental Biology, v.32, p.584-593, 1994. https://doi.org/10.1007/bf00025220
SHREYA, S.; SUPRIYA, L.; PADMAJA, G. Melatonin induces drought tolerance by modulating lipoxygenase expression, redox homeostasis and photosynthetic efficiency in Arachis hypogaea L. Frontiers in Plant Science, v.13, p.1069143, 2022. https://doi.org/10.3389/fpls.2022.1069143
SWAIN, T.; HILLIS, W.E. The phenolic constituents of Prunus domestica I. The quantitative analysis of phenolic constituents. Journal of the Science of Food and Agriculture, v.10, n.1, p.63-68, 1959. https://doi.org/10.1002/jsfa.2740100110
TEKBAS, O.F., OGUR, R., KORKMAZ, A., KILIC, A., REITER, R.J. Melatonin as an antibiotic: new insights into the actions of this ubiquitous molecule. Journal of Pineal Research, v.44, n.2, p.222-226, 2008. https://doi.org/10.1111/j.1600-079x.2007.00516.x
WANG, P.; LIU, W. C.; HAN, C.; WANG, S.; BAI, M.Y.; SONG, C.P. Reactive oxygen species: multidimensional regulators of plant adaptation to abiotic stress and development. Journal of Integrative Plant Biology, v.66, n.3, p.330-367, 2024b. https://doi.org/10.1111/jipb.13601
WANG, Y.; LIU, X.; SUN, M., ZHU, W.; ZHENG, Y.; ZHU, S.; YU, X. Melatonin enhances vase life and alters physiological responses in peony (Paeonia lactiflora Pall.) cut flowers. Postharvest Biology and Technology, v.212, p.112896, 2024a. https://doi.org/10.1016/j.postharvbio.2024.112896
ZENTGRAF, U.; ANDRADE-GALAN, A.G.; BIEKER, S. Specificity of H2O2 signaling in leaf senescence: is the ratio of H2O2 contents in different cellular compartments sensed in Arabidopsis plants? Cellular and Molecular Biology Letters, v.27, n.4, 2022. https://doi.org/10.1186/s11658-021-00300-w
ZULFIQAR, F.; ASHRAF, M. Proline alleviates abiotic stress induced oxidative stress in plants. Journal of Plant Growth Regulation v.42, p.4629-4651 2023. https://doi.org/10.1007/s00344-022-10839-3
ZULFIQAR, F.; MOOSA, A.; DARRAS, A.; NAFEES, M.; FERRANTE, A.; SIDDIQUE, K. H. Preharvest melatonin foliar treatments enhance postharvest longevity of cut tuberose via altering physio-biochemical traits. Frontiers in Plant Science, v.14, p.1151722, 2023. https://doi.org/10.3389/fpls.2023.1151722
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2025 Ornamental Horticulture

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.