Analysis of exogenous auxin and cytokinin action in overcoming root restriction in green and variegated Benjamin fig

Authors

DOI:

https://doi.org/10.1590/2447-536X.v29i1.2502

Keywords:

Ficus benjamina, growth regulators, ornamental foliage plants

Abstract

Green and variegated Benjamin fig (Ficus benjamina) often suffer from root restriction when grown in pots. While exogenous cytokinin applications have proven effective in reversing this stress, the possibility that exogenous auxins, either alone or in combination with cytokinin, may also be helpful has received little attention. In this work, we analyse the response of green     and variegated Ficus benjamina rooted cuttings growing in small pots to exogenous supply of auxin and cytokinin at different concentrations, either in single or combined applications. Our results show that both benzyl aminopurine (BAP) and indole acetic acid (IAA), at the highest concentration tested (100 mg L-1) increased leaf development and plant biomass accumulation in green and variegated Ficus genotypes. However, exogenous IAA and BAP appeared to elicit differential plant morpho-physiological responses. While BAP tended to enhance leaf appearance more than IAA did, the latter promoted leaf expansion in a steadier manner than BAP, thus resulting in plants with less, but larger, leaves than those treated with cytokinin. Despite these differences in plant architecture, regression analysis suggests that hormonal-induced growth promotion was solely attributable to enhanced carbon assimilation. Rather unexpectedly, IAA promoted net assimilation and photosynthesis rates at least as effectively as cytokinin. Possible mechanisms involved in growth and development promotion by exogenous application of both hormones are discussed. Auxin treatment may help overcome root restriction in Ficus as effectively as cytokinin in terms of growth promotion, although differences in plant architecture may arise as compared with plants sprayed with the latter hormone.

 

Downloads

Download data is not yet available.

References

BOUZROUD, S.; BARBOSA, M.A.M.; GASPARINI, K.; FAHR, M.; BENDAOU, N.; BOUZAYEN, M.; ZSÖGÖN, A.; SMOUNI, A.; ZOUINE, M. Loss of AUXIN RESPONSE FACTOR 4 function alters plant growth, stomatal functions and improves tomato tolerance to salinity and water deficit. BioRxiv, 756387, 2019. https://doi.org/10.1101/756387

CACKETT, L.; LUGINBUEHL, L.H.; SCHREIER, T.B.; LOPEZ JUEZ, E.; HIBBERD, J.M. Chloroplast development in green plant tissues: the interplay between light, hormone, and transcriptional regulation. New Phytologist, v.233, p.2000-2016, 2021. https://doi.org/10.1111/nph.17839

CARNELOS, D.; LOZANO MIGLIOLI, J.; GIARDINA, E.; TOGNETTI, J.; DI BENEDETTO, A Cytokinin action revisited: leaf anatomical changes play a key role in 6-benzylaminopurine-driven growth promotion in pot- grown lettuce. Revista Chapingo, Serie Horticultura, v.28, p.109-133, 2022. https://doi.org/10.5154/r.rchsh.2021.07.015

CORTLEVEN, A.; LEUENDORF, J.E.; FRANK, M., PEZZETTA, D., BOLT, S.; SCHMÜLLING, T. Cytokininaction in response to abiotic and biotic stresses in plants. Plant, Cell & Environment, v.42 p.998-1018, 2019. https://doi.org/10.1111/pce.13494

DI BENEDETTO A.; TOGNETTI, J. Plant growth analysis techniques: their application to intensive crops. RIA, v.42, p.258-282, 2016.

DI BENEDETTO, A.; GALMARINI, C.; TOGNETTI J. Effects of combined or single exogenous auxin and/or cytokinin applications on growth and leaf area development in Epipremnum aureum. Journal of Horticultural Science & Biotechnology, v.90, p.643-654, 2015.

DI BENEDETTO, A.; GALMARINI, C.; TOGNETTI, J. Differential growth response of green and variegated Ficus benjamina to exogenous cytokinin and shade. Ornamental Horticulture, v.26, p.259-276, 2020a. https://doi.org/10.1590/2447-536X.v26i2.2089

DI BENEDETTO, A.; GALMARINI, C.; TOGNETTI, J. New insight into how thigmomorphogenesis affects Epipremnum aureum plant development. Horticultura Brasileira, v.36, p.330-340, 2018. https://doi.org/10.1590/S0102-053620180308

DI BENEDETTO, A.; GIARDINA, E.; DE LOJO, J.; GANDOLFO, E.; HAKIM, G. Exogenous benzyl amino purine (BAP) applications for the ornamental pot industry. In: Cytokinins: biosynthesis and uses. KORTESMÄKI, S. (Ed.). New York: Nova Science Publishers, Inc., 2020b. p.1-56.

DU, M.; SPALDING, E.P.; GRAY, W.M. Rapid auxin-mediated cell expansion. Annual review of Plant Biology, v.71, p.379-402, 2020. https://doi.org/10.1146/annurev-arplant-073019-025907

FOURACRE, J.P.; POETHIG, R.S. Role for the shoot apical meristem in the specification of juvenile leaf identity in Arabidopsis. Proceedings of the National Academy of Sciences, v.116, p.10168-10177, 2019. https://doi.org/10.1073/pnas.1817853116

GAGO, J.; DALOSO, D.M.; CARRIQUÍ, M.; NADAL, M.; MORALES, M.; ARAÚJO, W.L.; NUNES- NESI, A.; PEREIRA-CASTRO, A.V.; CLEMENTE-MORENO M.J.; FLEXAS, J. The photosynthesis game is in the” inter-play”: mechanisms underlying CO2 diffusion in leaves. Environmental and Experimental Botany, v.178, 104174, 2020. https://doi.org/10.1016/j.envexpbot.2020.104174

GAO, S. Function and mechanism study of plant cytokinins. In: Proceedings of the 10th International Conference on Biomedical Engineering and Technology. p.80-84, 2020. https://doi.org/10.1145/3397391.3397395

GU, J.; LI, Z.; MAO, Y.; STRUIK, P.C.; ZHANG, H.; LIU, L.; WANGA, Z.; YANG, J. Roles of nitrogen and cytokinin signals in root and shoot communications in maximizing of plant productivity and their agronomic applications. Plant Science, v.274, p.320-331, 2018. https://doi.org/10.1016/j.plantsci.2018.06.010

HURNÝ, A.; CUESTA, C.; CAVALLARI, N.; ÖTVÖS, K.; DUCLERCQ, J.; DOKLÁDAL, L., MONTESINOS, J.C.; GALLEMÍ, M.; SEMERÁDOVÁ, H.; RAUTER, T.; STENZEL, I.; PERSIAU, G.; BENADE, F.; BHALEARO, R.; SÝKOROVÁ, E.; GORZSÁS, A.; SECHET, J.; MOUILLE, G.; HEILMANN, I.; DE JAEGER, G.; LUDWIG-MÜLLER, J.; BENKOVÁ, E. Synergistic on auxin and cytokinin 1 positively regulates growth and attenuates soil pathogen resistance. Nature Communications, v.11, 2170, 2020. https://doi.org/10.1038/s41467-020-15895-5

HUSSAIN, S.; NANDA, S.; ZHANG, J.; REHMANI, M.I.A.; SULEMAN, M.; LI, G.; HOU, H. Auxinand cytokinin interplay during leaf morphogenesis and phyllotaxy. Plants, v.10, 1732, 2021. https://doi.org/10.3390/plants10081732

LIU, S.; STRAUSS, S.; ADIBI, M.; MOSCA, G.; YOSHIDA, S.; IOIO, R.D.; RUNIONS, A.; ANDERSEN, T.G.; GROSSMANN, G.; HUIJSER, P.; SMITH, R.S.; TSIANTIS, M. Cytokinin promotes growth cessation in the Arabidopsis root. Current Biology, v.32, p.1974-1985, 2022. doi.org/10.1016/j.cub.2022.03.019

LIU, Y.; VON WIRÉN, N. Integration of nutrient and water availabilities via auxin into the root developmental program. Current Opinion in Plant Biology, v.65, 102117, 2022. https://doi.org/10.1016/j.pbi.2021.102117

MALLICK, A.; DEY, S.; DATTA, S.; BARMAN, M.; SAMUI, S.; DUTTA, G. Auxin and cytokinin signaling in plant stress response. In: AFTAB, T. (Ed.). Auxins, cytokinins and gibberellins signaling in plants. Cham: Springer International Publishing, 2022. 213-234.

MCADAM, S.A.; ELÉOUËT, M.P.; BEST, M.; BRODRIBB, T.J.; MURPHY, M.C.; COOK, S.D.; DALMAIS, M.; DIMITRIOU, T.; GÉLINAS-MARION, A.; GILL, W.M.; HEGARTY, M.; HOFER, J.M.I.; MACONOCHIE, M.; MCADAM, E.L.; MCGUINESS, P.; NICHOLS, D.S.; ROSS, J.J.; SUSSMILCH, F.C.; URQUHART, S. Linking auxin with photosynthetic rate via leaf venation. Plant Physiology, v.175, p.351-360, 2017. https://doi.org/10.1104/pp.17.00535

MEIER, M.; LIU, Y.; LAY-PRUITT, K.S.; TAKAHASHI, H.; VON WIRÉN, N. Auxin-mediated root branching is determined by the form of available nitrogen. Nature Plants, v.6, p.1136-1145. 2020. https://doi.org/10.1038/s41477-020-00756-2

MOLINARI, J.; PAGANI, A.; BUYATTI, M.; GIARDINA, E.; DI BENEDETTO, A. Effects of exogenous cytokinin application on the nursery of ornamental plants, mainly ‘New Guinea’ Impatiens (Impatiens hawkeri Bull) and on their pre- and post-transplant biomass accumulation. In: KORTESMÄKI, S. (Ed.). New York: Nova Science Publishers, Inc., 2020. p.57-106.

PAL, S.L. Role of plant growth regulators in floriculture: An overview. Journal of Pharmacognosy and phytochemistry, v.8, p.789-796, 2019.

PAQUE, S.; WEIJERS, D. Q&A: Auxin: the plant molecule that influences almost anything. BMC Biology, v.14, p.1-5, 2016. https://doi.org/10.1186/s12915-016-0291-0

PERNISOVÁ, M.; VERNOUX, T. Auxin does the SAMba: Auxin signaling in the shoot apical meristem. Cold Spring Harbor Perspectives in Biology, a039925, 2021. https://doi.org/10.1101/cshperspect.a039925

POORTER, H.; NIINEMETS, Ü.; NTAGKAS, N.; SIEBENKÄS, A.; MÄENPÄÄ, M.; MATSUBARA,

S.; PONS, T. A meta-analysis of plant responses to light intensity for 70 traits ranging from molecules to whole plant performance. New Phytologist, v.223, p.1073-1105, 2019. https://doi.org/10.1111/nph.15754

RIVAS, M.A.; FRIERO, I.; ALARCÓN, M.V.; SALGUERO, J. Auxin-cytokinin balance shapes maize root architecture by controlling primary root elongation and lateral root development. Frontiers in Plant Science, v.13, 836592, 2022. https://doi.org/10.3389/fpls.2022.836592

SARAVIA-CASTILLO, G.; FIGUEROA, L.T.; BORJAS-VENTURA, R. Auxins and Cytokinins elicit a differentiated response in the formation of shoots and roots in Cattleya maxima Lindl and Phalaenopsis amabilis (L) Blume. Scientia Agropecuaria, v.13, p.63-69, 2022. http://dx.doi.org/10.17268/sci.agropecu.2022.006

SCHALLER, G.E.; BISHOPP, A.; KIEBER, J.J. The yin-yang of hormones: cytokinin and auxin interactions in plant development. The Plant Cell, v.27, p.44-63, 2015. https://doi.org/10.1105/tpc.114.133595

SHIH, T.H.; LIN, S.H.; HUANG, M.Y.; HUANG, W.D.; YANG, C.M. Transcriptome profile of the variegated Ficus microcarpa cv Milky stripe fig leaf. International Journal of Molecular Sciences, v.20, p.1338, 2019. https://doi.org/10.3390/ijms20061338

XIONG, Y.; JIAO, Y. The diverse roles of auxin in regulating leaf development. Plants, v.8, 243, 2019. https://doi.org/10.3390/plants8070243

YUAN, Y.; XU, X.; GONG, Z.; TANG, Y.; WU, M.; YAN, F.; ZHANG, X.; ZHANG, Q.; YANG, F.; HU, X.; YANG, Q.; LUO, Y.; MEI, L.; ZHANG, W.; JIANG, C-Z.; LU, W.; LI, Z.; DENG, W. Auxin response factor 6A regulates photosynthesis, sugar accumulation, and fruit development in tomato. Horticulture Research, v.6, p.1-16, 2019. https://doi.org/10.1038/s41438-019-0167-x

Downloads

Published

2023-03-30

Issue

Section

Articles