Analysis of exogenous auxin and cytokinin action in overcoming root restriction in green and variegated Benjamin fig

Autores

DOI:

https://doi.org/10.1590/2447-536X.v29i1.2502

Palavras-chave:

Ficus benjamina, plantas ornamentais, reguladores de crescimento

Resumo

Ficus Benjamina (Ficus benjamina) verde e variegado geralmente sofre de restrição no crescimento das raízes quando cultivado em vasos. Embora as aplicações de citocinina exógena tenham se mostrado eficazes na reversão desse estresse, a possibilidade de que auxinas exógenas, sozinhas ou em combinação com citocinina, também possam ser benéficas tem recebido pouca atenção. Neste trabalho, foi analisada a resposta de estacas enraizadas de Ficus benjamina verdes e variegadas cultivadas em pequenos vasos, em relação ao fornecimento exógeno de auxina e citocinina em diferentes concentrações, em aplicações únicas ou combinadas. Nossos resultados mostram que tanto a benzilaminopurina (BAP) quanto o ácido indol-acético (IAA), na maior concentração testada (100 mg L-1), aumentaram o desenvolvimento foliar e o acúmulo de biomassa vegetal nos genótipos de Ficus verde e variegado. No entanto, AIA e BAP exógenos parecem provocar respostas morfofisiológicas diferenciadas nas plantas. O uso de BAP teve a tendência de melhorar a aparência das folhas mais do que AIA, sendo que este promoveu a expansão foliar de maneira mais estável do que o BAP, resultando em plantas com menos folhas, porém maiores, do que as tratadas com citocinina. Apesar dessas diferenças na arquitetura da planta, a análise de regressão sugere que a promoção do crescimento induzida por hormônios foi atribuída exclusivamente ao aumento da assimilação de carbono. De forma bastante inesperada, o AIA promoveu assimilação líquida e taxas de fotossíntese pelo menos tão efetivamente quanto a citocinina. Possíveis mecanismos envolvidos na promoção do crescimento e desenvolvimento pela aplicação exógena de ambos os hormônios são discutidos. O tratamento com auxina pode ajudar a superar a restrição radicular em Ficus de forma tão eficaz quanto a citocinina em termos de promoção de crescimento, embora possam surgir diferenças na arquitetura da planta em comparação com plantas pulverizadas com o último hormônio.

Downloads

Não há dados estatísticos.

Referências

BOUZROUD, S.; BARBOSA, M.A.M.; GASPARINI, K.; FAHR, M.; BENDAOU, N.; BOUZAYEN, M.; ZSÖGÖN, A.; SMOUNI, A.; ZOUINE, M. Loss of AUXIN RESPONSE FACTOR 4 function alters plant growth, stomatal functions and improves tomato tolerance to salinity and water deficit. BioRxiv, 756387, 2019. https://doi.org/10.1101/756387

CACKETT, L.; LUGINBUEHL, L.H.; SCHREIER, T.B.; LOPEZ JUEZ, E.; HIBBERD, J.M. Chloroplast development in green plant tissues: the interplay between light, hormone, and transcriptional regulation. New Phytologist, v.233, p.2000-2016, 2021. https://doi.org/10.1111/nph.17839

CARNELOS, D.; LOZANO MIGLIOLI, J.; GIARDINA, E.; TOGNETTI, J.; DI BENEDETTO, A Cytokinin action revisited: leaf anatomical changes play a key role in 6-benzylaminopurine-driven growth promotion in pot- grown lettuce. Revista Chapingo, Serie Horticultura, v.28, p.109-133, 2022. https://doi.org/10.5154/r.rchsh.2021.07.015

CORTLEVEN, A.; LEUENDORF, J.E.; FRANK, M., PEZZETTA, D., BOLT, S.; SCHMÜLLING, T. Cytokininaction in response to abiotic and biotic stresses in plants. Plant, Cell & Environment, v.42 p.998-1018, 2019. https://doi.org/10.1111/pce.13494

DI BENEDETTO A.; TOGNETTI, J. Plant growth analysis techniques: their application to intensive crops. RIA, v.42, p.258-282, 2016.

DI BENEDETTO, A.; GALMARINI, C.; TOGNETTI J. Effects of combined or single exogenous auxin and/or cytokinin applications on growth and leaf area development in Epipremnum aureum. Journal of Horticultural Science & Biotechnology, v.90, p.643-654, 2015.

DI BENEDETTO, A.; GALMARINI, C.; TOGNETTI, J. Differential growth response of green and variegated Ficus benjamina to exogenous cytokinin and shade. Ornamental Horticulture, v.26, p.259-276, 2020a. https://doi.org/10.1590/2447-536X.v26i2.2089

DI BENEDETTO, A.; GALMARINI, C.; TOGNETTI, J. New insight into how thigmomorphogenesis affects Epipremnum aureum plant development. Horticultura Brasileira, v.36, p.330-340, 2018. https://doi.org/10.1590/S0102-053620180308

DI BENEDETTO, A.; GIARDINA, E.; DE LOJO, J.; GANDOLFO, E.; HAKIM, G. Exogenous benzyl amino purine (BAP) applications for the ornamental pot industry. In: Cytokinins: biosynthesis and uses. KORTESMÄKI, S. (Ed.). New York: Nova Science Publishers, Inc., 2020b. p.1-56.

DU, M.; SPALDING, E.P.; GRAY, W.M. Rapid auxin-mediated cell expansion. Annual review of Plant Biology, v.71, p.379-402, 2020. https://doi.org/10.1146/annurev-arplant-073019-025907

FOURACRE, J.P.; POETHIG, R.S. Role for the shoot apical meristem in the specification of juvenile leaf identity in Arabidopsis. Proceedings of the National Academy of Sciences, v.116, p.10168-10177, 2019. https://doi.org/10.1073/pnas.1817853116

GAGO, J.; DALOSO, D.M.; CARRIQUÍ, M.; NADAL, M.; MORALES, M.; ARAÚJO, W.L.; NUNES- NESI, A.; PEREIRA-CASTRO, A.V.; CLEMENTE-MORENO M.J.; FLEXAS, J. The photosynthesis game is in the” inter-play”: mechanisms underlying CO2 diffusion in leaves. Environmental and Experimental Botany, v.178, 104174, 2020. https://doi.org/10.1016/j.envexpbot.2020.104174

GAO, S. Function and mechanism study of plant cytokinins. In: Proceedings of the 10th International Conference on Biomedical Engineering and Technology. p.80-84, 2020. https://doi.org/10.1145/3397391.3397395

GU, J.; LI, Z.; MAO, Y.; STRUIK, P.C.; ZHANG, H.; LIU, L.; WANGA, Z.; YANG, J. Roles of nitrogen and cytokinin signals in root and shoot communications in maximizing of plant productivity and their agronomic applications. Plant Science, v.274, p.320-331, 2018. https://doi.org/10.1016/j.plantsci.2018.06.010

HURNÝ, A.; CUESTA, C.; CAVALLARI, N.; ÖTVÖS, K.; DUCLERCQ, J.; DOKLÁDAL, L., MONTESINOS, J.C.; GALLEMÍ, M.; SEMERÁDOVÁ, H.; RAUTER, T.; STENZEL, I.; PERSIAU, G.; BENADE, F.; BHALEARO, R.; SÝKOROVÁ, E.; GORZSÁS, A.; SECHET, J.; MOUILLE, G.; HEILMANN, I.; DE JAEGER, G.; LUDWIG-MÜLLER, J.; BENKOVÁ, E. Synergistic on auxin and cytokinin 1 positively regulates growth and attenuates soil pathogen resistance. Nature Communications, v.11, 2170, 2020. https://doi.org/10.1038/s41467-020-15895-5

HUSSAIN, S.; NANDA, S.; ZHANG, J.; REHMANI, M.I.A.; SULEMAN, M.; LI, G.; HOU, H. Auxinand cytokinin interplay during leaf morphogenesis and phyllotaxy. Plants, v.10, 1732, 2021. https://doi.org/10.3390/plants10081732

LIU, S.; STRAUSS, S.; ADIBI, M.; MOSCA, G.; YOSHIDA, S.; IOIO, R.D.; RUNIONS, A.; ANDERSEN, T.G.; GROSSMANN, G.; HUIJSER, P.; SMITH, R.S.; TSIANTIS, M. Cytokinin promotes growth cessation in the Arabidopsis root. Current Biology, v.32, p.1974-1985, 2022. doi.org/10.1016/j.cub.2022.03.019

LIU, Y.; VON WIRÉN, N. Integration of nutrient and water availabilities via auxin into the root developmental program. Current Opinion in Plant Biology, v.65, 102117, 2022. https://doi.org/10.1016/j.pbi.2021.102117

MALLICK, A.; DEY, S.; DATTA, S.; BARMAN, M.; SAMUI, S.; DUTTA, G. Auxin and cytokinin signaling in plant stress response. In: AFTAB, T. (Ed.). Auxins, cytokinins and gibberellins signaling in plants. Cham: Springer International Publishing, 2022. 213-234.

MCADAM, S.A.; ELÉOUËT, M.P.; BEST, M.; BRODRIBB, T.J.; MURPHY, M.C.; COOK, S.D.; DALMAIS, M.; DIMITRIOU, T.; GÉLINAS-MARION, A.; GILL, W.M.; HEGARTY, M.; HOFER, J.M.I.; MACONOCHIE, M.; MCADAM, E.L.; MCGUINESS, P.; NICHOLS, D.S.; ROSS, J.J.; SUSSMILCH, F.C.; URQUHART, S. Linking auxin with photosynthetic rate via leaf venation. Plant Physiology, v.175, p.351-360, 2017. https://doi.org/10.1104/pp.17.00535

MEIER, M.; LIU, Y.; LAY-PRUITT, K.S.; TAKAHASHI, H.; VON WIRÉN, N. Auxin-mediated root branching is determined by the form of available nitrogen. Nature Plants, v.6, p.1136-1145. 2020. https://doi.org/10.1038/s41477-020-00756-2

MOLINARI, J.; PAGANI, A.; BUYATTI, M.; GIARDINA, E.; DI BENEDETTO, A. Effects of exogenous cytokinin application on the nursery of ornamental plants, mainly ‘New Guinea’ Impatiens (Impatiens hawkeri Bull) and on their pre- and post-transplant biomass accumulation. In: KORTESMÄKI, S. (Ed.). New York: Nova Science Publishers, Inc., 2020. p.57-106.

PAL, S.L. Role of plant growth regulators in floriculture: An overview. Journal of Pharmacognosy and phytochemistry, v.8, p.789-796, 2019.

PAQUE, S.; WEIJERS, D. Q&A: Auxin: the plant molecule that influences almost anything. BMC Biology, v.14, p.1-5, 2016. https://doi.org/10.1186/s12915-016-0291-0

PERNISOVÁ, M.; VERNOUX, T. Auxin does the SAMba: Auxin signaling in the shoot apical meristem. Cold Spring Harbor Perspectives in Biology, a039925, 2021. https://doi.org/10.1101/cshperspect.a039925

POORTER, H.; NIINEMETS, Ü.; NTAGKAS, N.; SIEBENKÄS, A.; MÄENPÄÄ, M.; MATSUBARA,

S.; PONS, T. A meta-analysis of plant responses to light intensity for 70 traits ranging from molecules to whole plant performance. New Phytologist, v.223, p.1073-1105, 2019. https://doi.org/10.1111/nph.15754

RIVAS, M.A.; FRIERO, I.; ALARCÓN, M.V.; SALGUERO, J. Auxin-cytokinin balance shapes maize root architecture by controlling primary root elongation and lateral root development. Frontiers in Plant Science, v.13, 836592, 2022. https://doi.org/10.3389/fpls.2022.836592

SARAVIA-CASTILLO, G.; FIGUEROA, L.T.; BORJAS-VENTURA, R. Auxins and Cytokinins elicit a differentiated response in the formation of shoots and roots in Cattleya maxima Lindl and Phalaenopsis amabilis (L) Blume. Scientia Agropecuaria, v.13, p.63-69, 2022. http://dx.doi.org/10.17268/sci.agropecu.2022.006

SCHALLER, G.E.; BISHOPP, A.; KIEBER, J.J. The yin-yang of hormones: cytokinin and auxin interactions in plant development. The Plant Cell, v.27, p.44-63, 2015. https://doi.org/10.1105/tpc.114.133595

SHIH, T.H.; LIN, S.H.; HUANG, M.Y.; HUANG, W.D.; YANG, C.M. Transcriptome profile of the variegated Ficus microcarpa cv Milky stripe fig leaf. International Journal of Molecular Sciences, v.20, p.1338, 2019. https://doi.org/10.3390/ijms20061338

XIONG, Y.; JIAO, Y. The diverse roles of auxin in regulating leaf development. Plants, v.8, 243, 2019. https://doi.org/10.3390/plants8070243

YUAN, Y.; XU, X.; GONG, Z.; TANG, Y.; WU, M.; YAN, F.; ZHANG, X.; ZHANG, Q.; YANG, F.; HU, X.; YANG, Q.; LUO, Y.; MEI, L.; ZHANG, W.; JIANG, C-Z.; LU, W.; LI, Z.; DENG, W. Auxin response factor 6A regulates photosynthesis, sugar accumulation, and fruit development in tomato. Horticulture Research, v.6, p.1-16, 2019. https://doi.org/10.1038/s41438-019-0167-x

Downloads

Publicado

2023-03-30

Edição

Seção

Artigos