Morphological and physiological responses of Calliandra haematocephala to water salinity stress and vermicompost

Authors

DOI:

https://doi.org/10.1590/2447-536X.v29i2.2555

Keywords:

antioxidative enzymes, abiotic stress, salt concentrations

Abstract

Salinity is one of abiotic stress that affects plant growth and production. The objective of this study was to investigate the effect of salinity and vermicompost on morphology and physiology parameters of Calliandra haematocephala. The experiment was carried out with salinity treatments at 1000, 2000 3000 ppm in addition to the control (tap water, 280 ppm), vermicompost treatments at 5%, 10%, 15%, and 20% in addition to the control. The results indicated that increasing level of salinity resulted in reduction in vegetative growth and flowering parameters (plant height, number of branches/plant, stem diameter, root length, fresh and dry weights of leaves and roots/plant, number of flowers /plant, as well as fresh and dry weights of flowers /plant), total chlorophylls, total carbohydrates, K+%, Ca2+%, and K+/Na+ ratio, while increased proline, Na+ and Cl−% in the plants. Catalase (CAT), superoxide dismutase (SOD), Ascorbate peroxidase (APX) enzyme activities significantly increased with elevating salinity level from 0 to 3000 ppm. Application of vermicompost with any concentration had a positive effect on vegetative growth and flowering parameters, total chlorophylls, total carbohydrates, nutrient uptake, K+/Na+ ratio, proline content, enzyme activities and reducing accumulation of Na+ and Cl−% toxic ions in leaves. Based on the results, application of vermicompost at 20% recommended for alleviating the harmful efects of salinity on Calliandra haematocephala plants irrigated with saline water at concentration up to 3000 ppm.

Downloads

Download data is not yet available.

Author Biographies

Hossam Ahmed Ashour, Cairo University

Faculty of Agriculture, Ornamental Horticulture Department, Giza, Egypt.

Shaimaa Mahmoud Heider, Cairo University

Faculty of Agriculture, Ornamental Horticulture Department, Giza, Egypt.

Marwa Mohamed Soliman, Horticulture Research Institute. Agricultural Research Center

Botanical Gardens Department, Giza, Egypt

References

ABD-EL-HADY, W.M.; SELIM, E.M.M.; EL-SAYED, N.I. Influence of humic and ascorbic acids on growth parameters and anthocyanin content of Acalypha wilkesiana irrigated with seawater. Plant Archives, v.19, n.1, p.652- 664, 2019.

ABDEL-MOLA, M.A.M; AYYAT, A.M. Interactive effects of water salinity stress and chitosan foliar-spray application on vegetative and flowering growth aspects and chemical constituents of pot marigold (Calendula officinalis L.) plant. Scientific Journal of Agricultural Sciences, v.2, n.2, p.80- 89, 2020. https://doi.org/10.21608/sjas.2020.47674.1048

ADAMIPOUR, N.; KHOSH-KHUI, M.; SALEHI, H.; RHO, H. Effect of vermicompost on morphological and physiological performances of pot marigold (Calendula officinalis L.) under salinity conditions. Advances in Horticultural Science, v.33, n.3 p.345-358, 2019. https://doi.org/10.13128/ahs-23714

AFKARI, A. An investigation to the vermicompost efficacy on the activity level of antioxidant enzymes and photosynthetic pigments of borage (Borago officinalis l.) under salinity stress conditions. Russian Agricultural Sciences, v.44, n.4, p.310-317, 2018.

ARDEBILIAND. Z.O.; SHARIFI, P. Growth and physiology of chrysanthemum morifolium supplemented with various fertilizers. Journal of Ornamental Plants, v.8, n.1, p.49-56, 2018.

ARUNESH, A.; MURALEEDHARAN, A.; SHA, K.; KUMAR, S.; JOSHI, J.L.; KUMAR, P.S.; RAJAN, E.B. Studies on the effect of different growing media on the growth and flowering of Gerbera cv. Goliath. Plant Archives, v. 20, n.1, p.653-657, 2020.

ASHOUR, H.A.: ESMAIL, S.E.A.; KOTB, M.S. Alleviative effects of chitosan or humic acid on Vitex trifolia ‘Purpurea’ grown under salinity stress. Ornamental Horticulture, v.27, n.1, p.88-102, 2021. https://doi.org/10.1590/2447-536X.v27i1.2157

AZEEM, M.; PIRJAN, K.; QASIM, M.; MAHMOOD, A.; JAVED, T.; MUHAMMAD, H.; YANG, S.; DONG, R.; ALI, B.; RAHIMI, M. Salinity stress improves antioxidant potential by modulating physio-biochemical responses in Moringa oleifera Lam. Scientific Reports, n.13, v. 2895, 2023. https://doi.org/10.1038/s41598-023-29954-6

BATES, L.S.; WALDERN, R.P.; TEARE, L.D. Rapid determination of free proline under water stress studies. Plant and Soil, v.39, p.205-207, 1973.

BAYAT, H.; SHAFIE, H.; SHAHRAKI, B. Salinity effects on growth, chlorophyll content, total phenols, and antioxidant activity in Salvia lavandulifolia Vahl. Advances in Horticultural Science, v.36, n.2, p.145-153, 2022.

BRADFORD, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, v.72, n.1-2, p.248-254, 1976.

CICEK, N.; ERDOGAN, M.; YUCEDAG, C.; CETIN, M. Improving the detrimental aspects of salinity in salinized soils of arid and semi-arid areas for effects of vermicompost leachate on salt stress in seedlings. Water Air & Soil Pollution, v.233, n.197, 2022. https://doi.org/10.1007/s11270-022-05677-8

CRUZ, L.R.D.; LUDWIG, F.; STEFFEN, G.P.; MALDANER, J. Development and quality of gladiolus stems with the use of vermicompost and Trichoderma sp. in substrate. Ornamental Horticulture, v.24, n.1, p.70-77, 2018. http://dx.doi.org/10.14295/oh.v24i1.1131

DUBOIS, M.; SMITH, F.; GILLES, K.A.; HAMILTON J.K.; REBERS, P.A. Colorimetric method for determination of sugar and related substances. Analytical Chemistry, v.28, n.3, p.350-356, 1956.

DUMANOVIĆ, J.; NEPOVIMOVA, E.; NATIĆ, M.; KUČA, K.; JAĆEVIĆ, V. The significance of reactive oxygen species and antioxidant defense system in plants: a concise overview. Frontiers in Plant Science, v.11, 552969, 2021. http://dx.doi.org/10.3389/fpls.2020.5529

EL-GHALY, E.M. Phytoconstituents from Calliandra hematocephala leaves and their biological activities. Al- Azhar Journal of Pharmaceutical Sciences, v.49, p.259- 268, 2014.

FOX, A.M.; GORDON, D.R.; DUSKY, J.A.; TYSON, L.; STOCKER, R.K. UF/IFAS. 2005. Assessment of the status of non-native plants in Florida’s natural areas. Available at: https://assessment.ifas.ufl.edu/. Accessed on: Apr 3rd, 2023.

GARCÍA-CAPARRÓS, P.; LAO, M.T. The effects of salt stress on ornamental plants and integrative cultivation practices. Scientia Horticulturae, v.240, p.430-439, 2018. https://doi.org/10.1016/j.scienta.2018.06.022

GASHAW, B. Plants response to the application of vermicompost: a review. Journal of Natural Sciences Research, v.9, n.3, p.47-52, 2019. https://doi.org/10.7176/JNSR/9-3-06

GAVLAK, R.G.; HORNECK, D.A.; MILLER, R. Plant, Soil, and Water Reference Methods for the Western Region. Logan: Western Rural Development Center, 1994. 58p.

HAIDA Z, HAKIMAN M. A comprehensive review on the determination of enzymatic assay and nonenzymatic antioxidant activities. Food Science & Nutrition, v.7, n.5, p.1555-1563, 2019. https://doi.org/10.1002/fsn3.1012

HAMAYL, A.F.; EL-BORAIE, E.A.; AWAD, A.F. Effect of foliar anti-salinity application on chemical constituents of neem plants under salinity condition. Journal of Plant Production, v.11, n.9, p.825-833, 2020.

HELALY, A.A.; EL-DAKAK, R.A. Effect of organic liquid vermicompost as a substitute for chemical fertilizer on morphological and biochemical characteristics in lettuce. Assiut Journal of Agricultural Sciences, v.52, n.3. p.69- 81, 2021. https://doi.org/10.21608/ajas.2021.98808.1047

JACKSON, M.L. Soil Chemical Analysis. New Delhi: Printice-Hall of India. Privat Limited, 1973. 498p.

JOKAR, N.K; HASSANPOUR ASIL, M. Effect of gibberellic acid and vermicompost on growth and flowering of daffodil flower. Journal of Crops Improvement, v.23, n.1, p.183-198, 2021. https://doi.org/10.22059/jci.2020.296530.2341.

KARAGÖZ, F.P.; DURSUN, A.; TEKINER, N.; KUL, R.; KOTAN, R. Efficacy of vermicompost and/or plant growth promoting bacteria on the plant growth and development in gladiolus. Ornamental horticulture, v.25, n.2, p.180-188, 2019.

KARLA, Y.P. Handbook of Reference Methods for plant Analysis. Boca Raton: CRC Press, Taylor & Francis Group, 1998. 287p.

KUMAR, V.; SHANKAR, R.; KUMAR, A.; UPADHYAY, A.; GANGVAR, S. Effect of Vermicompost, nitrogen and phosphorus growth and flower yield of african marigold (Tagetes erecta L.). International Journal of Advances in Agricultural Science and Technology, v.6, n.4, p. 1-5, 2019.

MA, Y.; DIAS, M.C.; FREITAS, H. Drought and salinity stress responses and microbe-induced tolerance in plants. Frontiers in Plant Science, v.11, 591911, 2020. https://doi.org/10.3389/fpls.2020.591911

MAHBOUB KHOMAMI, A.; HADDAD, A.; ALIPOOR, R.; HOJATI, S.I. Cow manure and Sawdust vermicompost effect on nutrition and growth of ornamental foliage plants. Central Asian Journal of Environmental Science and Technology Innovation, v.2, n.2, p.68-78, 2021.

MOGHIMI, B.A.; DEHESTANI, A.M.; SHIRMARDI, M.; MOMENPOUR, A. Effects of cow manure and vermicompost on growth characteristics of smoke tree (Cotinus coggygria Scop.) under salt stress under greenhouse. Iranian Journal of Forest and Poplar Research, v.26, n.4, p.483-495, 2019.

MOHAMMED, K.A.S.; ABD EL-RHEEM, K.H.M.; ELSAWY, A.M.; ESSA, E. M. Effect of vermicompost supplemented by foliar application of silicate on marjoram plants grown in saline soil. International journal on advanced science engineering and information technology, v.8, n.4, p.1029-1035, 2018. https://doi.org/10.18517/ijaseit.8.4.5654

NETTO, A.T.; CAMPOSTRINI, E.; DEOLIVIERA, J.G.; BRESSAN-SMITH, R.E. Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. Scientia Horticulturae, v.104, n.2, p.199-209, 2005.

PADAMANABHAN, V. Effect of vermicompost on growth and flowering of Chrysanthemum. Annals of the Romanian Society for Cell Biology, v.25, n.4, p.5068- 5077, 2021.

QAFARI RAHBAR, F.; HASSANPOUR ASIL, M.; VAZIRI, A.; TALESH SASANI, S.; OLFATI, J. Effects of different levels of vermicompost on some quantitative and qualitative characteristics of Lilium LA Hybrid. Journal of crops improvement, v.22, n.3, p.475-486. 2020.

RUIZ-LAU, N.; OLIVA-LLAVEN, M.A.; MONTES- MOLINA, J.A.; GUTIÉRREZ-MICELI, F.A. Mitigation of salinity stress by using the vermicompost and vermiwash. In: BAUDDH, K.; KUMAR, S.; SINGH, R.; KORSTAD, J. (eds). Ecological and Practical Applications for Sustainable Agriculture. Singapore: Springer, 2020. https://doi.org/10.1007/978-981-15-3372-3_15

STEEL, R.G.D.; TORRIE, J.H.; DICKEY, D.A. Principles and Procedures of Statistics. A Biometrical Approach. 3rd Ed. New York: McGraw-Hill Inc., 1997. 666p.

TAMMAM, A.; EL-AGGAN, W.; HELALY, A.; BADR, G.; EL-DAKAK, R. Proteomics and photosynthetic apparatus response to vermicompost attenuation of salinity stress Vicia faba leaves. Acta Physiologiae Plantarum, v.45, n.17, p.17-34, 2023. https://doi.org/10.1007/s11738-022-03481-9

YADAV, M.K.S.; CHANDLA, A. Response of potting mixtures against growth and flowering of chrysanthemum cv. Haldighati. International Journal of Agricultural Science and Research, v.11, n.2, p.15-20, 2021.

Downloads

Published

2023-05-15

Issue

Section

Articles