Enhancement of postharvest performance in Lilium tigrinum Ker Gawl flowers with Salicylic acid: a signalling molecule and a growth regulator

Authors

DOI:

https://doi.org/10.1590/2447-536X.v31.e312826

Keywords:

antioxidant enzymes, oxidative stress, proline, senescence, vase life

Abstract

The postharvest longevity of Lilium tigrinum (Tiger lily) flowers is a critical factor influencing their commercial value, highlighting the need for effective strategies to extend their vase life (VL). This study evaluates the efficacy of salicylic acid (SA) at a concentration of 60 µM as a preservative for prolonging the postharvest life of L. tigrinum cut flowers. The results showed that exogenous SA application significantly extended the VL by enhancing relative water uptake, reducing microbial load, and stabilizing various biochemical parameters.SA treatment effectively inhibited lipoxygenase activity, a key enzyme involved in lipid peroxidation, thus mitigating oxidative stress. This protective effect was achieved by boosting the reactive oxygen species (ROS) scavenging capacity, evidenced by increased total phenolic content and elevated activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX). Consequently, membrane lipid peroxidation levels were significantly reduced. Furthermore, SA treatment enhances total soluble protein content, increased proline accumulation, decreased specific protease activity and maintained lower amino acid levels. These enhancements in physiological and biochemical stability can significantly enhance the economic viability of the floral industry by extending the postharvest longevity and maintaining the aesthetic integrity of cut flowers, thereby addressing the increasing global demand for superior-quality floral commodities.

Downloads

Download data is not yet available.

Author Biographies

Moonisah Aftab, University of Kashmir

Department of Botany, Plant Physiology and Biochemistry Research Laboratory, Srinagar-J&K, India.

Haris Yousuf Lone, University of Kashmir

Department of Botany, Plant Physiology and Biochemistry Research Laboratory, Srinagar-J&K, India.

Wajahat Waseem Tantray, University of Kashmir

Centre for Interdisciplinary Research & Innovations, Srinagar-J&K, India.

Aijaz A. Wani, University of Kashmir

Department of Botany, Plant Physiology and Biochemistry Research Laboratory, Srinagar-J&K, India.

Mohmad Arief Zargar, University of Kashmir

Department of Botany, Plant Physiology and Biochemistry Research Laboratory, Srinagar-J&K, India.

Inayatullah Tahir, University of Kashmir

Department of Botany, Plant Physiology and Biochemistry Research Laboratory, Srinagar-J&K, India.

References

AEBI, H. Catalase in vitro. Methods Enzymology, v.105, p.121–126, 1984. https://doi.org/10.1016/S0076-6879(84)05016-3

ALAM, P.; BALAWI, T.A.; FAIZAN, M. Salicylic acid’s impact on growth, photosynthesis, and antioxidant enzyme activity of Triticum aestivum when exposed to salt. Molecules, v.28, p.100, 2022. https://doi.org/10.3390/molecules28010100

ALI, H.M.; KARAM, K.; KHAN, T.; WAHAB, S.; ULLAH, S.; SADIQ, M. Reactive oxygen species induced oxidative damage to DNA, lipids, and proteins of antibiotic-resistant bacteria by plant-based silver nanoparticles. Biotechnology, v.13, p.414-456, 2023. https://doi.org/10.1007/s13205-023-03835-1

ANZANO, A.; BONANOMI, G.; MAZZOLENI, S.; LANZOTTI, V. Plant metabolomics in biotic and abiotic stress: a critical overview. Phytochemistry Reviews, v.2, p.503-524, 2022. https://doi.org/10.1007/s11101-021-09786-w

ARIF, Y.; SAMI, F.; SIDDIQUI, H.; BAJGUZ, A.; HAYAT, S. Salicylic acid in relation to other phytohormones in plant: A study towards physiology and signal transduction under challenging environment. Environmental and Experimental Botany, v.175, p.104-140, 2020. https://doi.org/10.1016/j.envexpbot.2020.104040

AXELROD, B.; CHEESBROUGH, T.M.; LAAKSO, S. Lipoxygenase from soybeans: EC 1.13.11.12 Linoleate: oxygen oxidoreductase. Methods in Enzymology, v.71, p. 441-451, 1981. https://doi.org/10.1016/0076-6879(81)71055-3

BATES, L.S.; WALDREN, R.P.; TEARE, I.D. Rapid determination of free proline for water stress studies. Plant and Soil, v.39, p.205-207, 1973. https://doi.org/10.1007/BF00018060

CHEN, G.X.; ASADA, K. Ascorbate peroxidase in tea leaves: occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiology, v.30, p.987-998, 1989. https://doi.org/10.1093/oxfordjournals.pcp.a077844

DEHESTANI-ARDAKANI, M.; GHOLAMNEZHAD, J.; ALIZADEH, S.; MEFTAHIZADEH, H.; GHORBANPOUR, M. Salicylic acid and herbal extracts prolong vase life and improve quality of carnation (Dianthus caryophyllus L.) flowers. South African Journal of Botany, v.150, p.1192-1204, 2022. https://doi.org/10.1016/j. sajb.2022.09.028

DHINDSA, R.S., PLUMB-DHINDSA, P., THORPE, T.A. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, v.32, p.93-101, 1981. https://doi.org/10.1093/jxb/32.1.93

FAROOQ, S.; LONE, M.L.; UL HAQ, A.; PARVEEN, S.; ALTAF, F. TAHIR, I. Signalling cascades choreographing petal cell death: implications for postharvest quality. Plant Molecular Biology, v.11, p.63-102, 2024. https://doi.org/10.1007/s11103-024-01449-6

FORLANI, G.; TROVATO, M.; FUNCK, D.; SIGNORELLI, S. Regulation of proline accumulation and its molecular and physiological functions in stress defence. In: HOSSAIN, M.A.; VINAY KUMAR, BURRITT, D.J.; FUJITA, M.; MÄKELÄ, P.S.A. Osmoprotectant-mediated abiotic stress tolerance in plants. Cham: Springer, 2019. p.835-845.

GHAFARI, H.; HASSANPOUR, H.; JAFARI, M.; BESHARAT, S. Physiological, biochemical and gene-expressional responses to water deficit in apple subjected to partial root-zone drying (PRD). Plant Physiology and Biochemistry, v.148, p.333-346, 2020. https://doi.org/10.1016/j.plaphy.2020.01.034

HAJIZADEH, H.S.; AGHDAM, B.S.; FAKHRGHAZI, H.; KARAKUS, S.; KAYA, O. Physico-Chemical Responses of Alstroemeria spp. cv. Rebecca to the presence of salicylic acid and sucrose in vase solution during postharvest life. BMC Plant Biology, v.24, p.121-188, 2024. https://doi.org/10.1186/s12870-024-04814-1

HASANZADEH-NAEMI, M.; JARI, S.K.; ZARRINNIA, V.; FATEHI, F. The effect of exogenous methyl jasmonate and brassinosteroids on physicochemical traits, vase life, and Gray Mold disease of cut rose (Rosa hybrida L.) flowers. Journal of the Saudi Society of Agricultural Sciences, v.20, p.467-475, 2021. https://doi.org/10.1016/j.jssas.2021.05.007

IAKIMOVA, E.T.; TY, A.J.; MAARTEN, L.A.T.M.; NICOLAÏ, B.M.; WOLTERING, E.J. Programmed cell death and postharvest deterioration of fresh horticultural products. Postharvest Biology and Technology, v.10, p.214-310, 2024. https://doi.org/10.1016/j.postharvbio.2024.113010

KAYA, C.; UGURLAR, F.; ASHRAF, M.; AHMAD, P. Salicylic acid interacts with other plant growth regulators and signal molecules in response to stressful environments in plants. Plant Physiology and Biochemistry, v.196, p.431-443, 2023. https://doi.org/10.1016/j. plaphy.2023.02.006

KOO, Y. M.; HEO, A.Y.; CHOI, H.W. Salicylic acid as a safe plant protector and growth regulator. The Plant Pathology Journal, v.36, p.321-430, 2020. https://doi.org/10.5423/PPJ.RW.12.2019.0295

LIU, C.; LIU, Z.; YUAN, Y.; ZHANG, Y.; FANG, Y.; CHEN, J.; GAI, S. Comprehensive analyses of the proteome and ubiquitome revealed mechanism of high temperature accelerating petal abscission in tree peony. Horticultural Plant Journal, v.11, p.416-482, 2022. https://doi.org/10.1016/j.hpj.2022.12.007

LONE, M.L.; FAROOQ, S.; UL HAQ, A.; ALTAF, F.; PARVEEN, S.; TAHIR, I. Jasmonates and salicylic acid as enigmatic orchestrators of capitula senescence in Cosmos sulphureus Cav. Physiology and Molecular Biology of Plants, v.29, p.1863-1874, 2023. https://doi.org/10.1007/s12298-023-01407-4

LONE, M.L.; FAROOQ, S.; UL HAQ, A.; ALTAF, F.; PARVEEN, S.; TAHIR, I. Jasmonates and salicylic acid as enigmatic orchestrators of capitula senescence in Cosmos sulphureus Cav. Physiology and Molecular Biology of Plants, v.29, n.12, p.1863-1874, 2023. https://doi.org/10.1007/s12298-023-01407-4

LONE, M.L.; HAQ, A.U.; FAROOQ, S.; ALTAF, F.; TAHIR I. Nitric oxide effectively curtails neck bending and mitigates senescence in isolated flowers of Calendula officinalis L. Physiology and Molecular Biology of Plants, v.4, p.562-661, 2021. https://doi.org/10.1007/s12298-021-00969-5

LOWRY, O.H.; ROSEBROUGH, N.J.; FARR, A.L. RANDALL, R.J. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, v.19, p.265-275, 1951.

MALAKAR, M.; PAIVA, P.D.D.O.; BERUTO, M.; CUNHA NETO, A.R.D. Review of recent advances in post-harvest techniques for tropical cut flowers and future prospects: Heliconia as a case-study. Frontiers in Plant Science, v.14, p.221-346, 2023. https://doi.org/10.3389/fpls.2023.1221346

NAING, A.H.; LEE, K.; KIM, K.O.; AI, T.N.; KIM, C.K. Involvement of sodium nitroprusside (SNP) in the mechanism that delays stem bending of different gerbera cultivars. Frontiers in Plant Science, v.8, p.20-45, 2017. https://doi.org/10.3389/fpls.2017.02045

NISAR, S.; DAR, R.A.; TAHIR, I. Salicylic acid retards senescence and makes flowers last longer in Nicotiana plumbaginifolia (Viv). Plant Physiology Reports, v.26, p.128-136, 2021. https://doi.org/10.1007/s40502-021-00569-1

PARVEEN, S.; ALTAF, F.; FAROOQ, S.; HAQ, A.U.; LONE, M.L.; TAHIR, I. Is proline the quintessential sentinel of plants? A case study of postharvest flower senescence in Dianthus chinensis L. Physiology and Molecular Biology of Plants, v.27, p.1597-1607, 2021. https://doi.org/10.1007/s12298-021-01028-9

ROSEN, H. A modified ninhydrin colorimetric analysis for amino acids. Archives of Biochemistry and Biophysics, v.67, n.1, p.10-15, 1957. https://doi.org/10/1016/0003-9861(57)90241-2

SAIRAM, R.K. Effect of moisture-stress on physiological activities of two contrasting wheat genotypes. Indian Journal of Experimental Biology, v.32, p.594-594,1994.

SCARIOT, V.; PARADISO, R.; ROGERS, H.; DE PASCALE, S. Ethylene control in cut flowers: Classical and innovative approaches. Postharvest Biology and Technology, v.97, p.83-92, 2014. https://doi.org/10.1016/j. postharvbio.2014.06.010

SHI, A., LIU, J., ZOU, S., RENSING, C., ZHAO, Y., ZHANG, L., ... & YANG, W. (2024). Enhancement of cadmium uptake in Sedum alfredii through interactions between salicylic acid/jasmonic acid and rhizosphere microbial communities. Science of The Total Environment, v. 7, p. 174-285, 2024. https://doi.org/10.1016/j.scitotenv.2024.

SHINDE, S.P.; CHAUDHARI, S.R.; MATCHE, R.S. A way forward for a sustainable active packaging solution for prolonging the freshness and shelf life of Rosa hybrida L. cut flowers. Postharvest Biology and Technology, v. 24, p.112-475, 2023. https://doi.org/10.1016/j. postharvbio.2023.112475

SHOUKAT, S.; TASSAWAR, A.; KEYANI, R.; ZAFAR, M.; NAZ, R.; NOSHEEN, A., AHMAD, P. Exogenous application of sodium hydrosulphide and salicylic acid mitigate salinity stress in maize by regulating ionic balance, biochemical attributes, photosynthetic pigments and some key antioxidants. South African Journal of Botany, v.158, p.393-404, 2023. https://doi.org/10.1016/j.sajb.2023.05.016

SWAIN, T.; HILLIS, W.E.The phenolic constituents of Prunus domestica. I. The quantitative analysis of phenolic constituents. Journal of the Science of Food and Agriculture, v.10, p.63-68, 1959. https://doi.org/10.1002/jsfa.2740100110

SYMONEAUX, R.; SEGOND, N.; MAIGNANT, A. Sensory and consumer sciences applicated on ornamental plants. In Non food Sensory Practices, v.11, p.291-311, 2022. https://doi.org/10.1016/B978-0-12-821939-3.00007-5

TAYYAB, S.; QAMAR, S. A look into enzyme kinetics: some introductory experiments. Biochemical Education, v.20, p.116-118, 1992. https://doi.org/10.1016/03074412(92)90121-2

UL HAQ, A.; LONE, M.L.; FAROOQ, S.; PARVEEN, S.; ALTAF, F.; TAHIR, I.; EL-SEREHY, H.A. Efficacy of salicylic acid in modulating physiological and biochemical mechanisms to improve postharvest longevity in cut spikes of Consolida ajacis (L.) Schur. Saudi Journal of Biological Sciences, v.29, p.713-720, 2022. https://doi.org/10.1016/j. sjbs.2021.11.057

VAN DOORN, W.G.; WOLTERING, E.J. Senescence and programmed cell death: substance or semantics? Journal of Experimental Botany, v. 55, p.2147-2153, 2004. https://doi.org/10.1093/jxb/erh264

WANG, L.; CHEN, Y.; WU, M.; DAI, F.; YE, M.; CHEN, F.; HUANG, H. Involvement of lignin deposition and cell wall degradation in stem senescence of Chinese flowering cabbage during storage. Postharvest Biology and Technology, v.198, p.112-256, 2023. https://doi.org/10.1016/j.postharvbio.2023.112256

WU, Y.; ZHANG, S.; YANG, H.; WU, W.; LYU, L.; ZHANG, C.; LI, W. Methyl jasmonate and salicylic acid treatment changes the nutritional quality, antioxidant profile and gene expression of postharvest blackberry fruit. Postharvest Biology and Technology, v.21, p.113-205, 2025. https://doi.org/10.1016/j.postharvbio.2024.113205

Downloads

Published

2025-02-11

Issue

Section

Articles