Melhoria do desempenho pós-colheita em flores de Lilium tigrinum Ker Gawl com ácido salicílico: uma molécula sinalizadora e um regulador de crescimento
DOI:
https://doi.org/10.1590/2447-536X.v31.e312826Palavras-chave:
enzimas antioxidantes, estresse oxidativo, prolina, senescência, vida de vasoResumo
A longevidade pós-colheita das flores de Lilium tigrinum (lírio-tigre) influencia diretamente seu valor comercial, destacando a necessidade de estratégias eficazes para prolongar sua vida de vaso (VV). Este estudo avalia a eficácia do ácido salicílico (AS) na concentração de 60 µM como conservante para prolongar a vida pós-colheita de flores cortadas de L. tigrinum. Os resultados mostraram que a aplicação exógena de AS estendeu significativamente a VV ao melhorar a absorção relativa de água, reduzir a carga microbiana e estabilizar vários parâmetros bioquímicos. O tratamento com AS inibiu a atividade da lipoxigenase, uma enzima chave envolvida na peroxidação lipídica, mitigando assim o estresse oxidativo. Este efeito protetor foi alcançado ao aumentar a capacidade de eliminação de espécies reativas de oxigênio (ROS), evidenciado pelo aumento do conteúdo fenólico total e das atividades elevadas de enzimas antioxidantes como superóxido dismutase (SOD), catalase (CAT) e ascorbato peroxidase (APX). Consequentemente, os níveis de peroxidação lipídica da membrana foram significativamente reduzidos. Além disso, o tratamento com AS aumentou o conteúdo total de proteínas solúveis, elevou a acumulação de prolina, diminuiu a atividade específica de proteases e manteve níveis mais baixos de aminoácidos. Essas melhorias na estabilidade fisiológica e bioquímica podem aumentar significativamente a viabilidade econômica da floricultura, prolongando a longevidade pós-colheita e mantendo a integridade estética das flores cortadas, atendendo assim à crescente demanda global por produtos florais de qualidade.
Downloads
Referências
AEBI, H. Catalase in vitro. Methods Enzymology, v.105, p.121–126, 1984. https://doi.org/10.1016/S0076-6879(84)05016-3
ALAM, P.; BALAWI, T.A.; FAIZAN, M. Salicylic acid’s impact on growth, photosynthesis, and antioxidant enzyme activity of Triticum aestivum when exposed to salt. Molecules, v.28, p.100, 2022. https://doi.org/10.3390/molecules28010100
ALI, H.M.; KARAM, K.; KHAN, T.; WAHAB, S.; ULLAH, S.; SADIQ, M. Reactive oxygen species induced oxidative damage to DNA, lipids, and proteins of antibiotic-resistant bacteria by plant-based silver nanoparticles. Biotechnology, v.13, p.414-456, 2023. https://doi.org/10.1007/s13205-023-03835-1
ANZANO, A.; BONANOMI, G.; MAZZOLENI, S.; LANZOTTI, V. Plant metabolomics in biotic and abiotic stress: a critical overview. Phytochemistry Reviews, v.2, p.503-524, 2022. https://doi.org/10.1007/s11101-021-09786-w
ARIF, Y.; SAMI, F.; SIDDIQUI, H.; BAJGUZ, A.; HAYAT, S. Salicylic acid in relation to other phytohormones in plant: A study towards physiology and signal transduction under challenging environment. Environmental and Experimental Botany, v.175, p.104-140, 2020. https://doi.org/10.1016/j.envexpbot.2020.104040
AXELROD, B.; CHEESBROUGH, T.M.; LAAKSO, S. Lipoxygenase from soybeans: EC 1.13.11.12 Linoleate: oxygen oxidoreductase. Methods in Enzymology, v.71, p. 441-451, 1981. https://doi.org/10.1016/0076-6879(81)71055-3
BATES, L.S.; WALDREN, R.P.; TEARE, I.D. Rapid determination of free proline for water stress studies. Plant and Soil, v.39, p.205-207, 1973. https://doi.org/10.1007/BF00018060
CHEN, G.X.; ASADA, K. Ascorbate peroxidase in tea leaves: occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiology, v.30, p.987-998, 1989. https://doi.org/10.1093/oxfordjournals.pcp.a077844
DEHESTANI-ARDAKANI, M.; GHOLAMNEZHAD, J.; ALIZADEH, S.; MEFTAHIZADEH, H.; GHORBANPOUR, M. Salicylic acid and herbal extracts prolong vase life and improve quality of carnation (Dianthus caryophyllus L.) flowers. South African Journal of Botany, v.150, p.1192-1204, 2022. https://doi.org/10.1016/j. sajb.2022.09.028
DHINDSA, R.S., PLUMB-DHINDSA, P., THORPE, T.A. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, v.32, p.93-101, 1981. https://doi.org/10.1093/jxb/32.1.93
FAROOQ, S.; LONE, M.L.; UL HAQ, A.; PARVEEN, S.; ALTAF, F. TAHIR, I. Signalling cascades choreographing petal cell death: implications for postharvest quality. Plant Molecular Biology, v.11, p.63-102, 2024. https://doi.org/10.1007/s11103-024-01449-6
FORLANI, G.; TROVATO, M.; FUNCK, D.; SIGNORELLI, S. Regulation of proline accumulation and its molecular and physiological functions in stress defence. In: HOSSAIN, M.A.; VINAY KUMAR, BURRITT, D.J.; FUJITA, M.; MÄKELÄ, P.S.A. Osmoprotectant-mediated abiotic stress tolerance in plants. Cham: Springer, 2019. p.835-845.
GHAFARI, H.; HASSANPOUR, H.; JAFARI, M.; BESHARAT, S. Physiological, biochemical and gene-expressional responses to water deficit in apple subjected to partial root-zone drying (PRD). Plant Physiology and Biochemistry, v.148, p.333-346, 2020. https://doi.org/10.1016/j.plaphy.2020.01.034
HAJIZADEH, H.S.; AGHDAM, B.S.; FAKHRGHAZI, H.; KARAKUS, S.; KAYA, O. Physico-Chemical Responses of Alstroemeria spp. cv. Rebecca to the presence of salicylic acid and sucrose in vase solution during postharvest life. BMC Plant Biology, v.24, p.121-188, 2024. https://doi.org/10.1186/s12870-024-04814-1
HASANZADEH-NAEMI, M.; JARI, S.K.; ZARRINNIA, V.; FATEHI, F. The effect of exogenous methyl jasmonate and brassinosteroids on physicochemical traits, vase life, and Gray Mold disease of cut rose (Rosa hybrida L.) flowers. Journal of the Saudi Society of Agricultural Sciences, v.20, p.467-475, 2021. https://doi.org/10.1016/j.jssas.2021.05.007
IAKIMOVA, E.T.; TY, A.J.; MAARTEN, L.A.T.M.; NICOLAÏ, B.M.; WOLTERING, E.J. Programmed cell death and postharvest deterioration of fresh horticultural products. Postharvest Biology and Technology, v.10, p.214-310, 2024. https://doi.org/10.1016/j.postharvbio.2024.113010
KAYA, C.; UGURLAR, F.; ASHRAF, M.; AHMAD, P. Salicylic acid interacts with other plant growth regulators and signal molecules in response to stressful environments in plants. Plant Physiology and Biochemistry, v.196, p.431-443, 2023. https://doi.org/10.1016/j. plaphy.2023.02.006
KOO, Y. M.; HEO, A.Y.; CHOI, H.W. Salicylic acid as a safe plant protector and growth regulator. The Plant Pathology Journal, v.36, p.321-430, 2020. https://doi.org/10.5423/PPJ.RW.12.2019.0295
LIU, C.; LIU, Z.; YUAN, Y.; ZHANG, Y.; FANG, Y.; CHEN, J.; GAI, S. Comprehensive analyses of the proteome and ubiquitome revealed mechanism of high temperature accelerating petal abscission in tree peony. Horticultural Plant Journal, v.11, p.416-482, 2022. https://doi.org/10.1016/j.hpj.2022.12.007
LONE, M.L.; FAROOQ, S.; UL HAQ, A.; ALTAF, F.; PARVEEN, S.; TAHIR, I. Jasmonates and salicylic acid as enigmatic orchestrators of capitula senescence in Cosmos sulphureus Cav. Physiology and Molecular Biology of Plants, v.29, p.1863-1874, 2023. https://doi.org/10.1007/s12298-023-01407-4
LONE, M.L.; FAROOQ, S.; UL HAQ, A.; ALTAF, F.; PARVEEN, S.; TAHIR, I. Jasmonates and salicylic acid as enigmatic orchestrators of capitula senescence in Cosmos sulphureus Cav. Physiology and Molecular Biology of Plants, v.29, n.12, p.1863-1874, 2023. https://doi.org/10.1007/s12298-023-01407-4
LONE, M.L.; HAQ, A.U.; FAROOQ, S.; ALTAF, F.; TAHIR I. Nitric oxide effectively curtails neck bending and mitigates senescence in isolated flowers of Calendula officinalis L. Physiology and Molecular Biology of Plants, v.4, p.562-661, 2021. https://doi.org/10.1007/s12298-021-00969-5
LOWRY, O.H.; ROSEBROUGH, N.J.; FARR, A.L. RANDALL, R.J. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, v.19, p.265-275, 1951.
MALAKAR, M.; PAIVA, P.D.D.O.; BERUTO, M.; CUNHA NETO, A.R.D. Review of recent advances in post-harvest techniques for tropical cut flowers and future prospects: Heliconia as a case-study. Frontiers in Plant Science, v.14, p.221-346, 2023. https://doi.org/10.3389/fpls.2023.1221346
NAING, A.H.; LEE, K.; KIM, K.O.; AI, T.N.; KIM, C.K. Involvement of sodium nitroprusside (SNP) in the mechanism that delays stem bending of different gerbera cultivars. Frontiers in Plant Science, v.8, p.20-45, 2017. https://doi.org/10.3389/fpls.2017.02045
NISAR, S.; DAR, R.A.; TAHIR, I. Salicylic acid retards senescence and makes flowers last longer in Nicotiana plumbaginifolia (Viv). Plant Physiology Reports, v.26, p.128-136, 2021. https://doi.org/10.1007/s40502-021-00569-1
PARVEEN, S.; ALTAF, F.; FAROOQ, S.; HAQ, A.U.; LONE, M.L.; TAHIR, I. Is proline the quintessential sentinel of plants? A case study of postharvest flower senescence in Dianthus chinensis L. Physiology and Molecular Biology of Plants, v.27, p.1597-1607, 2021. https://doi.org/10.1007/s12298-021-01028-9
ROSEN, H. A modified ninhydrin colorimetric analysis for amino acids. Archives of Biochemistry and Biophysics, v.67, n.1, p.10-15, 1957. https://doi.org/10/1016/0003-9861(57)90241-2
SAIRAM, R.K. Effect of moisture-stress on physiological activities of two contrasting wheat genotypes. Indian Journal of Experimental Biology, v.32, p.594-594,1994.
SCARIOT, V.; PARADISO, R.; ROGERS, H.; DE PASCALE, S. Ethylene control in cut flowers: Classical and innovative approaches. Postharvest Biology and Technology, v.97, p.83-92, 2014. https://doi.org/10.1016/j. postharvbio.2014.06.010
SHI, A., LIU, J., ZOU, S., RENSING, C., ZHAO, Y., ZHANG, L., ... & YANG, W. (2024). Enhancement of cadmium uptake in Sedum alfredii through interactions between salicylic acid/jasmonic acid and rhizosphere microbial communities. Science of The Total Environment, v. 7, p. 174-285, 2024. https://doi.org/10.1016/j.scitotenv.2024.
SHINDE, S.P.; CHAUDHARI, S.R.; MATCHE, R.S. A way forward for a sustainable active packaging solution for prolonging the freshness and shelf life of Rosa hybrida L. cut flowers. Postharvest Biology and Technology, v. 24, p.112-475, 2023. https://doi.org/10.1016/j. postharvbio.2023.112475
SHOUKAT, S.; TASSAWAR, A.; KEYANI, R.; ZAFAR, M.; NAZ, R.; NOSHEEN, A., AHMAD, P. Exogenous application of sodium hydrosulphide and salicylic acid mitigate salinity stress in maize by regulating ionic balance, biochemical attributes, photosynthetic pigments and some key antioxidants. South African Journal of Botany, v.158, p.393-404, 2023. https://doi.org/10.1016/j.sajb.2023.05.016
SWAIN, T.; HILLIS, W.E.The phenolic constituents of Prunus domestica. I. The quantitative analysis of phenolic constituents. Journal of the Science of Food and Agriculture, v.10, p.63-68, 1959. https://doi.org/10.1002/jsfa.2740100110
SYMONEAUX, R.; SEGOND, N.; MAIGNANT, A. Sensory and consumer sciences applicated on ornamental plants. In Non food Sensory Practices, v.11, p.291-311, 2022. https://doi.org/10.1016/B978-0-12-821939-3.00007-5
TAYYAB, S.; QAMAR, S. A look into enzyme kinetics: some introductory experiments. Biochemical Education, v.20, p.116-118, 1992. https://doi.org/10.1016/03074412(92)90121-2
UL HAQ, A.; LONE, M.L.; FAROOQ, S.; PARVEEN, S.; ALTAF, F.; TAHIR, I.; EL-SEREHY, H.A. Efficacy of salicylic acid in modulating physiological and biochemical mechanisms to improve postharvest longevity in cut spikes of Consolida ajacis (L.) Schur. Saudi Journal of Biological Sciences, v.29, p.713-720, 2022. https://doi.org/10.1016/j. sjbs.2021.11.057
VAN DOORN, W.G.; WOLTERING, E.J. Senescence and programmed cell death: substance or semantics? Journal of Experimental Botany, v. 55, p.2147-2153, 2004. https://doi.org/10.1093/jxb/erh264
WANG, L.; CHEN, Y.; WU, M.; DAI, F.; YE, M.; CHEN, F.; HUANG, H. Involvement of lignin deposition and cell wall degradation in stem senescence of Chinese flowering cabbage during storage. Postharvest Biology and Technology, v.198, p.112-256, 2023. https://doi.org/10.1016/j.postharvbio.2023.112256
WU, Y.; ZHANG, S.; YANG, H.; WU, W.; LYU, L.; ZHANG, C.; LI, W. Methyl jasmonate and salicylic acid treatment changes the nutritional quality, antioxidant profile and gene expression of postharvest blackberry fruit. Postharvest Biology and Technology, v.21, p.113-205, 2025. https://doi.org/10.1016/j.postharvbio.2024.113205
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2025 Ornamental Horticulture

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.